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A B S T R A C T

In the present work, analytical expressions for the energy eigenvalues and eigen functions are obtained by
solving the radial Schrödinger equation for inverse quadratic Hellmann plus Yukawa (IQHY) potential using
Nikiforov-Uvarov functional analysis method. As an application part of this work, expressions for the linear
and third-order nonlinear absorption coefficients and refractive index changes are computed to study the
optical properties of the spherical GaAs quantum dots. We extend the investigation of the IQHY potential
by incorporating the effects of magnetic and Aharonov–Bohm (AB) flux fields. Our results reveal that the
optical properties of the GaAs quantum dots are strongly influenced by variations in the dot radius, potential
height and intensity of incident photons. Specifically, we observe that the introduction of magnetic and AB flux
fields significantly alters the energy eigenvalues and eigenfunctions, leading to distinct optical characteristics.
The results of present study are found in consistent with other theoretical studies available in the literature.

1. Introduction

The interest of scientific community is growing rapidly in the area
of semiconductor technology due to their ability of fabricating struc-
tures with diverse geometrical forms and having applications in high
speed electro-optical modulators, infrared photo-detectors, and other
semiconductor devices [1,2]. In case of low dimensional semiconductor
materials, the development of electrical and opto-electronic devices
depend on the induction of nonlinear optical effects by quantum con-
finement phenomena. Lots of theoretical as well as experimental results
are available in literature for linear as well as nonlinear optical prop-
erties of structures like quantum wells, quantum wires, and quantum
dots (QDs) [3–16]. In order to calculate optical properties of QDs,
numerous potential models have been explored in past and few of them
are summarized as follows.

Khordad and Mirhosseini [17,18] derived expressions for linear and
third-order nonlinear absorption coefficients (AC) and refractive index
changes (RIC) using the Teitz and Rosen–Morse potentials for spherical
GaAs QDs. Xie [19] theoretically investigated the optical AC and RIC of
spherical GaAs−Ga1−𝑥Al𝑥As QDs by using the Gaussian confinement po-
tential. Employing modified Kratzer potential, Khordad [20] computed
the electronic and optical properties for spherical GaAs − Ga1−𝑥Al𝑥As

QDs using numerical diagonalization of the Hamiltonian matrix. Zhang
et al. [21] studied the optical AC by considering the electron–phonon
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interaction in asymmetrical quantum wells and showed that the optical
AC depend strongly on the parameters of quantum well.

Using the compact density matrix and iterative approaches, Liu and
Guo [22] computed the optical properties of spherical QDs with ring-
shaped non-spherical oscillator potential. Further, using the Hulthén
and Manning-Rosen potentials, Onyeaju et al. [23,24] studied optical
properties of spherical GaAs∕AlGaAs QDs and found that the dot ra-
dius, the dipole matrix and the energy terms, greatly influence the
optical properties of QDs. Within the framework of effective mass
approximation scheme, Lu et al. [25] studied the effects of intense
laser fields on the nonlinear optical properties of donor impurities in
GaAs∕AlGaAs QDs using the Woods–Saxon potential. For the same po-
tential model, Xie [26] studied the optical properties of spherical QDs
(GaAs∕AlGaAs) by using numerical diagonalization of the Hamiltonian
matrix. Liu and Xu et al. [27] studied the optical properties of cylindri-
cal GaAs∕Al𝛽Ga1−𝛽As QDs by using the density matrix formalism and
found that these properties depend not only on the incident optical
intensity but also on the dot size and the presence of Al mole fraction
in the material.

Recently, Rani and Chand [28] investigated the electronic energy
spectra of a two dimensional two electrons parabolic quantum dot using
the series and the Taylor expansion methods with an ansatz to the wave
function. Using iterative and matrix diagonalization methods, E. B. Al
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et al. [29] calculated the linear, third-order nonlinear and total optical
AC and observed that the donor position, magnetic field and dot size
cause significant changes in the optical AC. Rahimi et al. [30] investi-
gated the effect of magnetic field on electronic and optical spectra of
spherical QD and quantum anti-dot (QAD) by using the finite difference
method and dipole approximation approach. Solaimani [31] studied
the effects of magnetic field on linear optical properties of GaN∕AlN
multi-well quantum rings and dots with constant total effective radii.

Using the diagonalization method, Servatkhah and Pourmand [32]
studied the effects of strain and magnetic field on optical properties
of a two dimensional GaAs QD. Gammon et al. [33] studied fine and
hyperfine splittings arising from electron, hole, and nuclear spin inter-
actions in the magneto optical spectra of individual localized excitons
in single GaAs QDs and also explained the magnetic field dependence
of the energy splitting through competition between Zeeman, exchange,
and hyperfine interactions. Xie [34] investigated the nonlinear optical
properties of an exciton bound to an ionized donor impurity in a disc-
like parabolic QD by using the matrix diagonalization method and the
compact density-matrix approach.

Recently, Kumar et al. [35] investigated the optical properties and
effect of magnetic field on energy spectra of a GaAs spherical QD within
the framework of Coulomb plus linear harmonic potential. Vaseghi
et al. [36] studied the simultaneous effects of spin–orbit interaction
and external electric field on the linear and nonlinear optical properties
of a cubic QD. Recently, solving the SE using Nikiforov–Uvarov (NU)
method, Ghanbari [37] studied the third harmonic generation in a
spherical QD under inversely quadratic Hellmann potential. Using the
NU method and compact density matrix theory, Li et al. [38,39] studied
effects of QD radius, confinement potential depth and controllable
effective mass on the optical rectification coefficient (ORC) in spherical
QDs, confined with Modified Kratzer–Coulomb and Woods–Saxon plus
attractive inversely quadratic potentials.

Recent studies are mainly focused on the concept that how magnetic
and AB flux fields [40] affect the low dimensional systems. Khor-
dad [41] studied the effect of an external magnetic field on the direct
inter-band optical transitions in QDs. Within the framework of a general
interaction potential, Rani et al. [42] obtained the analytical solutions
to the radial SE for a two dimensional two-electron QD system using
the Taylor expansion method. They have also presented the effects of
anharmonic potential, the Coulomb interaction terms and the magnetic
field on the energy spectra of QDs. Employing the asymptotic iteration
method, Aygun et al. [43] obtained the solutions to radial SE for the
Kratzer potential with and without a constant magnetic field.

In the presence of an AB flux field, Ferkous and Bounames [44]
solved the two dimensional Pauli equation with the Hulthen potential
for spin half particles and observed that the AB flux field remove the
degeneracy of energy levels. Ikhdair et al. [45] studied the effects
of magnetic and AB flux fields on the energy eigenvalues and eigen
functions of Klein–Gordon (KG) equation using harmonic oscillator
potential model. Hedin et al. [46] investigated the combined AB flux
field and Zeeman spin-polarization effects in a double QD ring. Using
compact density matrix and iterative methods, Li et al. [47] theo-
retically investigated the second-harmonic generation coefficient for
GaAs∕AlGaAs parabolic QDs subject to applied electric and magnetic
fields.

Oyewumi et al. [48] investigated the Hellmann potential in the pres-
ence of external magnetic and AB flux fields and obtained expressions
for the energy eigenvalues and eigen functions by using the NU method.
Ikot et al. [49] investigated the impact of magnetic and AB flux fields
on the bound state solutions of the SE with screened Kratzer potential
by using the factorization method. Similarly, Karayer [50] used the
extended NU method to solve the radial SE in the presence of external
magnetic and AB flux fields. Within the framework of non-relativistic
quantum mechanics, Horchani et al. [51] investigated the inversely
quadratic Yukawa potential in the presence of external magnetic and
AB flux fields by solving the SE via NUFA method, and then obtained

Fig. 1. The variation of IQHY potential w.r.t. 𝑟 for 𝑉𝑜 = 224.46 meV.

energy eigenvalues and eigen functions. In the study conducted by Edet
et al. [52], the effect of magnetic field on different properties of a
spherical GaAs QD doped with a donor impurity is discussed. Zhang
et al. [53] investigated the impact of an applied electric field on the
energy levels and optical properties of a Gaussian confinement QD.

So, in present work, we consider the IQHY potential which is a
combination of inversely quadratic Hellman and Yukawa potentials
i.e.,

𝑉 (𝑟) = −
𝑎

𝑟
+
𝑏

𝑟2
𝑒−𝛼𝑟 −

𝑉𝑜

𝑟2
𝑒−2𝛼𝑟, (1)

where 𝛼 is an adjustable screening parameter which defines the dot
radius 𝑅0 =

1

𝛼
. Here, 𝑎 and 𝑏 are connected to the potential height

𝑉0 through 𝑎 = 𝑉0𝑅0 and 𝑏 = 𝑉0𝑅
2
0
. Eq. (1) is a three-term po-

tential that consists of a Coulomb term, a screened Coulomb term,
and a repulsive term. The first term −

𝑎

𝑟
represents the Coulomb in-

teraction between charged particles. The second term 𝑏

𝑟2
𝑒−𝛼𝑟 describes

the screened Coulomb interaction between the particles, where 𝑏 is
a constant related to the strength of the interaction. The third term
−
𝑉𝑜
𝑟2
𝑒−2𝛼𝑟 represents a repulsive potential, where 𝑉𝑜 is a constant related

to the strength of the repulsion. One advantage of this potential is that it
can describe the behavior of charged particles in systems with screening
effects and repulsive interactions, which are common in molecular
and solid-state systems. Moreover, the goal of combining at least two
potential models is to improve results because potential with more
parameters tends to do so. In Fig. 1, the IQHY potential, Eq. (1) is
plotted with the distance 𝑟 for various value of the QD radius 𝑅𝑜.

Present analytical approach provides a novel and efficient method
for understanding the quantum mechanical behavior of particles in the
IQHY potential landscapes. Furthermore, the incorporation of magnetic
and AB flux fields into the investigation of the optical properties
represents a unique aspect of this research. The consideration of these
additional factors expands the scope of the study and enhances the
understanding of how magnetic and AB flux fields influence the optical
properties of spherical GaAs QDs. The study is not merely obtaining
analytical expressions but goes beyond to apply its findings to calculate
linear and third-order nonlinear AC as well as RIC. This application-
oriented approach provides practical insights into the optical properties
of QDs, emphasizing the real-world implications of the theoretical
framework developed in the present work.

The paper is organized as follows. In Section 2, we briefly describe
mathematical formalism of the NUFA method. The energy eigenvalues
and eigen functions to the SE with IQHY potential are calculated in
Section 3. In Section 4, we explore how magnetic and AB flux fields
affect the energy eigenvalues spectra. Various optical properties of
spherical GaAs QDs are summarized and plotted in Section 5. Results
and discussion part are covered in Section 6. Finally, the concluding
remarks are addressed in Section 7.
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2. Mathematical formalism

The NUFA method is considered a combination of the NU [54,55],
parametric NU [56], and functional analysis techniques. In order to
explain the mathematical formalism of this method [57–59], consider
the differential equation of the form

𝑑2𝜓(𝑠)

𝑑𝑠2
+
𝛼1 − 𝛼2𝑠

𝑠(1 − 𝛼3𝑠)

𝑑𝜓(𝑠)

𝑑𝑠

+
1

𝑠2(1 − 𝛼3𝑠)
2

[
−𝜉1𝑠

2 + 𝜉2𝑠 − 𝜉3
]
𝜓(𝑠) = 0.

(2)

With the following choice of the wave function

𝜓(𝑠) = 𝑠𝜆(1 − 𝛼3𝑠)
𝜈𝑓 (𝑠), (3)

the Eq. (2) reduces to

𝑠(1 − 𝛼3𝑠)
𝑑2𝑓 (𝑠)

𝑑𝑠2
+

[
𝛼1 + 2𝜆 − (2𝜆𝛼3 + 2𝜈𝛼3 + 𝛼2)𝑠

]
𝑑𝑓 (𝑠)

𝑑𝑠

− 𝛼3

⎛⎜⎜⎝
𝜆 + 𝜈 +

1

2

(
𝛼2
𝛼3

− 1

)
+

√√√√ 1

4

(
𝛼2
𝛼3

− 1

)2

+
𝜉1

𝛼2
3

⎞⎟⎟⎠

×

⎛
⎜⎜⎝
𝜆 + 𝜈 +

1

2

(
𝛼2
𝛼3

− 1

)
+

√√√√ 1

4

(
𝛼2
𝛼3

− 1

)2

+
𝜉1

𝛼2
3

⎞
⎟⎟⎠

+

[
𝜆(𝜆 − 1) + 𝛼1𝜆 − 𝜉3

𝑠

+
𝛼2𝜈 − 𝛼1𝛼3𝜈 + 𝜈(𝜈 − 1)𝛼3 + 𝜉2 − 𝜉3𝛼3 −

𝜉1
𝛼3

(1 − 𝛼3𝑠)

]
𝑓 (𝑠) = 0.

(4)

Further, Eq. (4) turns out to be a Gauss hypergeometric type equation
if and only if

𝜆(𝜆 − 1) + 𝛼1𝜆 − 𝜉3 = 0, (5)

𝛼2𝜈 − 𝛼1𝛼3𝜈 + 𝜈(𝜈 − 1)𝛼3 + 𝜉2 − 𝜉3𝛼3 −
𝜉1
𝛼3

= 0, (6)

condition hold.
Eq. (4) therefore turns out to be

𝑠(1 − 𝛼3𝑠)
𝑑2𝑓 (𝑠)

𝑑𝑠2
+

[
𝛼1 + 2𝜆 − (2𝜆𝛼3 + 2𝜈𝛼3 + 𝛼2)𝑠

]
𝑑𝑓 (𝑠)

𝑑𝑠

− 𝛼3

⎛⎜⎜⎝
𝜆 + 𝜈 +

1

2

(
𝛼2
𝛼3

− 1

)
+

√√√√ 1

4

(
𝛼2
𝛼3

− 1

)2

+
𝜉1

𝛼2
3

⎞⎟⎟⎠
×

⎛
⎜⎜⎝
𝜆 + 𝜈 +

1

2

(
𝛼2
𝛼3

− 1

)
+

√√√√ 1

4

(
𝛼2
𝛼3

− 1

)2

+
𝜉1

𝛼2
3

⎞
⎟⎟⎠
= 0.

(7)

The solutions to the quadratic Eqs. (5) and (6) are conveniently written
as

𝜆 =
(1 − 𝛼1)

2
±

1

2

√
(1 − 𝛼1)

2 + 4𝜉3, (8)

.

𝜈 =
(𝛼3+𝛼1𝛼3−𝛼2)±

√
(𝛼3+𝛼1𝛼3−𝛼2)

2+4
(
𝜉1
𝛼3

+𝛼3𝜉3−𝜉2

)

2𝛼3
. (9)

Eq. (7) is a hypergeometric type equation of the form

𝑥(1 − 𝑥)𝑓 ′′(𝑥) + [𝑐1 + (𝑎1 + 𝑏1 + 1)𝑥]𝑓 ′(𝑥) − [𝑎1𝑏1]𝑓 (𝑥) = 0, (10)

where, the parameters 𝑎1, 𝑏1 and 𝑐1 are defined as

𝑎1 =
√
𝛼3

(
𝜆 + 𝜈 + 1

2

(
𝛼2
𝛼3

− 1
)
+

√
1

4

(
𝛼2
𝛼3

− 1
)2

+
𝜉1
𝛼2
3

)
, (11)

𝑏1 =
√
𝛼3

(
𝜆 + 𝜈 + 1

2

(
𝛼2
𝛼3

− 1
)
−

√
1

4

(
𝛼2
𝛼3

− 1
)2

+
𝜉1
𝛼2
3

)
, (12)

𝑐1 = 𝛼1 + 2𝜆. (13)

The hypergeometric function f(s) would be a polynomial of degree n if
𝑎1 or 𝑏1 equals to a negative integer (say, -n). Under quantum condition
𝑎1 = −𝑛, Eq. (11) reduces to

𝜆 + 𝜈 +
1

2

(
𝛼2
𝛼3

− 1

)
+

𝑛√
𝛼3

= −

√√√√ 1

4

(
𝛼2
𝛼3

− 1

)2

+
𝜉1

𝛼2
3

. (14)

Eq. (14) may be simplified as

𝜆2 + 2𝜆

(
𝜈 +

1

2

(
𝛼2
𝛼3

− 1

)
+

𝑛√
𝛼3

)

+

(
𝜈 +

1

2

(
𝛼2
𝛼3

− 1

)
+

𝑛√
𝛼3

)2

−
1

4

(
𝛼2
𝛼3

− 1

)2

−
𝜉1

𝛼2
3

= 0.

(15)

Using Eqs. (8) and (9) in Eq. (3), we have

𝜓(𝑠) =𝑁𝑠
(1−𝛼1)+

√
(1−𝛼1)

2+4𝜉3
2

× (1 − 𝛼3𝑠)

(𝛼3+𝛼1𝛼3−𝛼2)+

√√√√√(𝛼3+𝛼1𝛼3−𝛼2)
2+4

⎛
⎜⎜⎝
𝜉1

𝛼2
3

+𝛼3𝜉3−𝜉2

⎞
⎟⎟⎠

2

×2F1(𝑎1, 𝑏1, 𝑐1; 𝑠).

(16)

Here, 𝑁 is the normalization constant and 2F1(𝑎1, 𝑏1, 𝑐1; 𝑠) is a hyperge-
ometric type function.

3. Bound state solutions to the radial SE

The radial SE with IQHY potential (1) is written as

𝑑2𝑅(𝑟)

𝑑𝑟2
+

2𝜇

ℏ2

[
𝐸 +

𝑎

𝑟
−

𝑏

𝑟2
𝑒−𝛼𝑟 +

𝑉𝑜
𝑟2
𝑒−2𝛼𝑟 −

𝑙(𝑙+1)ℏ2

2𝜇𝑟2

]
𝑅(𝑟) = 0. (17)

Now, through the Greene-Aldrich approximation [60–62], the centrifu-
gal term is written as,

1

𝑟2
≈

𝛼2

(1 − 𝑒−𝛼𝑟)2
, (18)

Thereby, the radial SE (17) reduces to

𝑑2𝑅(𝑟)

𝑑𝑟2
+

𝛼2

(1 − 𝑒−𝛼𝑟)2

[
2𝜇𝐸(1 − 𝑒−𝛼𝑟)2

ℏ2𝛼2
+

2𝜇𝑎(1 − 𝑒−𝛼𝑟)

ℏ2𝛼

−
2𝜇𝑏𝑒−𝛼𝑟

ℏ2
+

2𝜇𝑉𝑜𝑒
−2𝛼𝑟

ℏ2
− 𝑙(𝑙 + 1)

]
𝑅(𝑟) = 0.

(19)

Next through a co-ordinate transformation, 𝑒−𝛼𝑟 = 𝑠 and after ne-
glecting the terms of higher powers of 𝑠, 𝑖.𝑒. 𝑠3 and 𝑠4, we obtain

𝑑2𝑅(𝑠)

𝑑𝑠2
+
1

𝑠

𝑑𝑅(𝑠)

𝑑𝑠
+

1

𝑠2(1 − 𝑠)2

[ (
2𝜇𝐸

ℏ2𝛼2
+

2𝜇𝑉𝑜

ℏ2

)
𝑠2

+

(
−
4𝜇𝐸

ℏ2𝛼2
−

2𝜇𝑎

ℏ2𝛼
−

2𝜇𝑏

ℏ2

)
𝑠 +

2𝜇𝐸

ℏ2𝛼2
+

2𝜇𝑎

ℏ2𝛼

− 𝑙(𝑙 + 1)

]
𝑅(𝑠) = 0.

(20)

A comparison of Eqs. (2) and (20) leads to the following parameters

𝛼1 = 𝛼2 = 𝛼3 = 1, 𝜉1 = 𝜖 + 𝜏1,

𝜉2 = 2𝜖 + 𝜏2, 𝜉3 = 𝜖 + 𝜏3,
(21)

where

𝜖 = −
2𝜇𝐸

ℏ2𝛼2
, 𝜏1 = −

2𝜇𝑉𝑜

ℏ2
,

𝜏2 = −
2𝜇𝑎

ℏ2𝛼
−

2𝜇𝑏

ℏ2
, 𝜏3 = −

2𝜇𝑎

ℏ2𝛼
+ 𝑙(𝑙 + 1).

(22)
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After invoking Eqs. (21) and (22) in Eqs. (15) and (16), the energy
eigenvalues and corresponding eigen functions expressions become

𝐸 = −
ℏ2𝛼2

2𝜇

[
𝜏1 − 𝜏3 − (𝜈 + 𝑛)2

2(𝜈 + 𝑛)

]2

+
ℏ2𝛼2𝜏3
2𝜇

, (23)

𝑅𝑛𝑙(𝑟) = 𝑁𝑠
√
𝜖+𝜏3

⋅ (1 − 𝑠)
1
2
+

1
2

√
1+4(𝜏1−𝜏2+𝜏3)

×2𝐹1(𝑎1, 𝑏1, 𝑐1; 𝑠).
(24)

Here

𝑎1 = 𝜆 + 𝜈 +
√
𝜉1, 𝑏1 = 𝜆 + 𝜈 −

√
𝜉1, 𝑐1 = 1 + 2𝜆. (25)

To check the effects of potential height 𝑉𝑜 and QD radius 𝑅𝑜, replace
the potential parameters as 𝑎 = 𝑉𝑜𝑅𝑜 and 𝑏 = 𝑉𝑜𝑅

2
𝑜 , in Eq. (1) as

𝑉 (𝑟) = −
𝑉𝑜𝑅𝑜
𝑟

+
𝑉𝑜𝑅

2
𝑜

𝑟2
𝑒−𝛼𝑟 −

𝑉𝑜

𝑟2
𝑒−2𝛼𝑟, (26)

and the energy eigenvalues Eq. (23) becomes

𝐸 = −
ℏ2𝛼2

2𝜇

[
−

2𝜇𝑉𝑜
ℏ2

+
2𝜇𝑉𝑜𝑅𝑜
ℏ2𝛼

− 𝑙(𝑙 + 1) −
(
𝛽 + 𝑛

)2

2
(
𝛽 + 𝑛

)
]2

+
ℏ2𝛼2

(
−

2𝜇𝑉𝑜𝑅𝑜
ℏ2𝛼

+ 𝑙(𝑙 + 1)
)

2𝜇
,

(27)

where

𝛽 =
1

2
+

1

2

√√√√1 + 4

(
−
2𝜇𝑉𝑜

ℏ2
+

2𝜇𝑉𝑜𝑅
2
𝑜

ℏ2
+ 𝑙(𝑙 + 1)

)
. (28)

3.1. Special cases

By appropriately adjusting the parameters of the general potential
(1), it is possible to readily obtain various potential forms of practical
implications.

3.1.1. Inverse quadratic Hellmann potential

When the value of 𝑉𝑜 is set to zero, the potential (1) simplifies to
the inverse quadratic Hellmann potential

𝑉 (𝑟) = −
𝑎

𝑟
+
𝑏

𝑟2
𝑒−𝛼𝑟, (29)

and the corresponding energy eigenvalues equation for this potential
becomes

𝐸 = −
ℏ2𝛼2

2𝜇

[ 2𝜇𝑎

ℏ2𝛼
−𝑙(𝑙+1)−

(
1
2
+

1
2

√
1+4

(
2𝜇𝑏

ℏ2
+𝑙(𝑙+1)

)
+𝑛
)2

2
(
1
2
+

1
2

√
1+4

(
2𝜇𝑏

ℏ2
+𝑙(𝑙+1)

)
+𝑛
)

]2

+
ℏ2𝛼2

(
−

2𝜇𝑎

ℏ2𝛼
+ 𝑙(𝑙 + 1)

)

2𝜇
.

(30)

3.1.2. Inverse quadratic Yukawa potential

By substituting 𝑎 = 𝑏 = 0, the potential (1) reduces to inverse
quadratic Yukawa potential

𝑉 (𝑟) = −
𝑉𝑜

𝑟2
𝑒−2𝛼𝑟, (31)

and the corresponding energy eigenvalues equation is written as

𝐸 = −
ℏ2𝛼2

2𝜇

[
−

2𝜇𝑉𝑜

ℏ2
−𝑙(𝑙+1)−

(
1
2
+

1
2

√
1+4

(
−

2𝜇𝑉𝑜

ℏ2
𝑙(𝑙+1)

)
+𝑛
)2

2
(
1
2
+

1
2

√
1+4

(
−

2𝜇𝑉𝑜

ℏ2
𝑙(𝑙+1)

)
+𝑛
)

]2

+
ℏ2𝛼2

(
𝑙(𝑙 + 1)

)

2𝜇
.

(32)

4. Effects of magnetic and AB flux fields

In the presence of external magnetic and AB flux fields, the dynam-
ics of a charged particle can be explained using the IQHY potential. The
corresponding Hamiltonian operator is then represented in cylindrical
coordinates and the SE for Eq. (1) becomes [63]
(
𝑖ℏ∇⃗ −

𝑒

𝑐
𝐴

)2

𝜓(𝑟, 𝜙, 𝑧)

= 2𝜇

[
𝐸𝑛𝑚 +

𝑎

𝑟
−

𝑏

2𝑟2
𝑒−𝛼𝑟 +

𝑉𝑜

𝑟2
𝑒−2𝛼𝑟

]
𝜓(𝑟, 𝜙, 𝑧).

(33)

Here, 𝐸𝑛𝑚 represents the energy and 𝜇 is the effective mass of the
system. Vector potential, 𝐴 can be expressed as a superposition of two
terms 𝐴 = 𝐴1 + 𝐴2, with the azimuthal components [64] and external
magnetic field ∇⃗×𝐴1 = 𝐵⃗, ∇⃗×𝐴2 = 0, where 𝐵⃗ is the magnetic field. To
represent the additional magnetic flux, (𝛷𝐴𝐵) produced by a solenoid,

we select 𝐴1 =
𝐵⃗𝑒−𝛼𝑟

1−𝑒−𝛼𝑟
and 𝐴2 =

𝛷𝐴𝐵
2𝜋𝑟

. In its simplest form, the vector

potential 𝐴 is written as

𝐴 =

(
0,

𝐵⃗𝑒−𝛼𝑟

1 − 𝑒−𝛼𝑟
+
𝛷𝐴𝐵
2𝜋𝑟

𝛷̂𝐴𝐵 , 0

)
. (34)

Now consider a wave function in the cylindrical coordinates as

𝜓(𝑟, 𝜙, 𝑧) =
1√
2𝜋𝑟

𝑒𝑖𝑚𝜙𝑅𝑛𝑚(𝑟), (35)

where 𝑚 denotes the magnetic quantum number.
In view of Eqs. (18) and (34), Eq. (33) reduces to

𝑑2𝑅(𝑟)

𝑑𝑟2
+

𝛼2

(1 − 𝑒−𝛼𝑟)2

[
2𝜇𝐸(1 − 𝑒−𝛼𝑟)2

ℏ2𝛼2
+

2𝜇𝑎(1 − 𝑒−𝛼𝑟)

ℏ2𝛼

−
2𝜇𝑏𝑒−𝛼𝑟

ℏ2
+

2𝜇𝑉𝑜𝑒
−2𝛼𝑟

ℏ2
+

2𝑚𝜅𝐵⃗𝑒−𝛼𝑟

ℏ𝛼
−
𝜅2𝐵⃗2𝑒−2𝛼𝑟

ℏ2𝛼2

−
𝜅2𝐵⃗𝛷𝐴𝐵𝑒

−𝛼𝑟

ℏ2𝛼𝜋
−

(
(𝑚 + 𝜂)2 −

1

4

) ]
𝑅(𝑟) = 0,

(36)

where 𝜅 = −
𝑒

𝑐
, 𝛷0 =

ℎ𝑐

𝑒
, 𝜂 = 𝛷𝐴𝐵

𝛷0
and 𝑐 is the speed of light.

After using a co-ordinate transformation, 𝑒−𝛼𝑟 = 𝑠 and neglecting
terms of higher powers of 𝑠 𝑖.𝑒. 𝑠3 and 𝑠4, we obtain

𝑑2𝑅(𝑠)

𝑑𝑠2
+

1

𝑠

𝑑𝑅(𝑠)

𝑑𝑠
+

1

𝑠2(1 − 𝑠)2

[ (
2𝜇𝐸

ℏ2𝛼2
+

2𝜇𝑉𝑜

ℏ2
−
𝜅2𝐵⃗2

ℏ2𝛼2

)
𝑠2

+

(
−
4𝜇𝐸

ℏ2𝛼2
−

2𝜇𝑎

ℏ2𝛼
−

2𝜇𝑏

ℏ2
+

2𝑚𝜅𝐵⃗

ℏ𝛼
−
𝜅2𝐵⃗𝛷𝐴𝐵

ℏ2𝛼𝜋

)
𝑠

+
2𝜇𝐸

ℏ2𝛼2
+

2𝜇𝑎

ℏ2𝛼
−

(
(𝑚 + 𝜂)2 −

1

4

) ]
𝑅(𝑠) = 0.

(37)

A comparison of above equation with Eq. (2), provides us

𝛼1 = 𝛼2 = 𝛼3 = 1, 𝜉1 = 𝜖 + 𝜁1,

𝜉2 = 2𝜖 + 𝜁2, 𝜉3 = 𝜖 + 𝜁3,
(38)

where

𝜖 = −
2𝜇𝐸

ℏ2𝛼2
, 𝜁1 = −

2𝜇𝑉𝑜

ℏ2
+
𝜅2𝐵⃗2

ℏ2𝛼2
,

𝜁2 = −
2𝜇𝑎

ℏ2𝛼
−

2𝜇𝑏

ℏ2
+

2𝑚𝜅𝐵⃗

ℏ𝛼
−
𝜅2𝐵⃗𝛷𝐴𝐵

ℏ2𝛼𝜋
,

𝜁3 = −
2𝜇𝑎

ℏ2𝛼
+ (𝑚 + 𝜂)2 −

1

4
.

(39)

After using the result of Eqs. (38) and (39) in Eq. (15), the energy
eigenvalues equation for potential (1) in the presence of magnetic and
AB flux fields is written as

𝐸 = −
ℏ2𝛼2

2𝜇

[
𝜁1 − 𝜁3 − (𝜈1 + 𝑛)

2

2(𝜈1 + 𝑛)

]2

+
ℏ2𝛼2𝜁3
2𝜇

, (40)
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where

𝜈1 =
1

2
+

1

2

√
1 + 4(𝜁1 − 𝜁2 + 𝜁3). (41)

5. Optical properties

In this study, density matrix formalism [65] is applied to calculate
the AC and RIC of spherical GaAs QDs. For QDs, the inter-subband
transition between two levels occurs only when an incident photon
having energy equivalent to the energy difference between these two
sub-bands i.e. ℏ𝜔 = 𝐸2 − 𝐸1. Here, ℏ𝜔 represents the incident photons
energy, 𝐸1 and 𝐸2 are the ground and first excited states energies of
QDs, respectively.

Here, excitation electromagnetic field is considered as [5]

𝐸(𝑡) = 𝐸̃𝑒𝑖𝑤𝑡 + 𝐸∗𝑒−𝑖𝑤𝑡, (42)

where 𝜔 and 𝐸̃ are the frequency and amplitude of the electric field.
In case of the one-electron density operator 𝜌, the temporal evolution
of the matrix elements can carried out employing [6,7]

𝜕𝜌̂

𝜕𝑡
=

1

𝑖ℏ
[𝐻𝑜 − 𝑒𝑧̂𝐸(𝑡), 𝜌̂] − 𝛤 (𝜌̂ − 𝜌̂

(0)), (43)

where 𝐻𝑜 is the Hamiltonian in the absence of electromagnetic field
𝐸(𝑡) with 𝑒 being the electronic charge, 𝜌̂(0) is the unperturbed density
matrix operator. 𝛤 is assumed to be a diagonal matrix with elements
equal to the inverse of relaxation time 𝑖.𝑒. , 𝛤 =

1

𝜏
[18]. Eq. (43) can

be solved using standard iterative method [24] by considering

𝜌̂(𝑡) =
∑
𝑛=0

𝜌𝑛(𝑡), (44)

with

𝜕𝜌
(𝑛−1)
𝑖𝑗

𝜕𝑡
=

1

𝑖ℏ

{
[𝐻𝑜, 𝜌

(𝑛+1)]𝑖𝑗 − 𝑖ℏ𝛤𝑖𝑗𝜌
𝑛+1
𝑖𝑗

}

−
1

𝑖ℏ
[𝑒𝑧, 𝜌𝑛]𝑖𝑗𝐸(𝑡).

(45)

The electronic polarization 𝑃 (𝑡) can be expressed as

𝑃 (𝑡) = 𝜖𝑜𝜒(𝑤)𝐸̃𝑒
−𝑖𝑤𝑡 + 𝜖𝑜𝜒(−𝑤)𝐸

∗𝑒𝑖𝑤𝑡 =

(
1

𝑉

)
𝑇 𝑟(𝜌𝑀), (46)

where 𝜒(𝑤) is the susceptibility,𝑀 is the dipole operator, 𝑉 is the sys-
tem volume and 𝜖𝑜 is the permittivity of vacuum. Due to the inversion
symmetry of the system, the susceptibility 𝜒(𝑤) is expanded in series
for accounting the coefficients up to the third-order, the even orders
of susceptibility vanishes. The analytical expressions for the linear 𝜒 (1)

and third-order nonlinear 𝜒 (3) susceptibility coefficients are written
as [66]

𝜖𝑜𝜒
(1)(𝑤) =

𝜎𝑣|𝑀21|2
𝐸21 − ℏ𝑤 − 𝑖ℏ𝛤12

, (47)

and

𝜖𝑜𝜒
(3)(𝑤) = −

𝜎𝑣|𝑀21|2|𝐸̃|2
𝐸21 − ℏ𝑤 − 𝑖ℏ𝛤12

[
4|𝑀21|2

(𝐸21 − ℏ𝑤)
2 + (ℏ𝛤21)

2

−
|𝑀22 −𝑀11|2

(𝐸21 − 𝑖ℏ𝛤12)(𝐸21 − ℏ𝑤 − 𝑖ℏ𝛤12)

]
,

(48)

where 𝜎𝑣 is the carrier density. Here, the matrix element𝑀𝑖𝑗 of electric
dipole moment is calculated from

𝑀𝑖𝑗 = 𝑒∫ 𝜓∗
𝑛𝑖𝑙𝑖𝑚𝑖

(𝑟, 𝜃, 𝜙)𝑧𝜓𝑛𝑗 𝑙𝑗𝑚𝑗 (𝑟, 𝜃, 𝜙)𝑟
2𝑑𝑟 sin 𝜃𝑑𝜃𝑑𝜙, (49)

with 𝑧 = 𝑟 cos 𝜃. The matrix element of electric dipole moment (49)
is proportional to the inter-subband optical transition probability am-
plitude between two electronic states described by the wave function
𝜓𝑛1𝑙1𝑚1

and 𝜓𝑛2𝑙2𝑚2
.

The AC, 𝛼(𝑤) can be calculated from 𝜒(𝑤) by using the following
relation [18,24]

𝛼(𝑤) = 𝑤

√
𝜇𝑜
𝜖
𝐼𝑚[𝜖𝑜𝜒(𝑤)], (50)

where 𝜖 = 𝑛2𝑟 𝜖𝑜 is permittivity of the material, 𝑛𝑟 and 𝜇𝑜 are the
refractive index and permeability of vacuum respectively.

Now using Eqs. (47) and (48) in Eq. (50), the expressions for linear
and third-order nonlinear AC turn out to be

𝛼(1)(𝑤) = 𝑤

√
𝜇𝑜
𝜖

𝜎𝑣4|𝑀21|2𝛤12
(𝐸21 − ℏ𝑤)

2 + (ℏ𝛤21)
2
, (51)

and

𝛼(3)(𝑤, 𝐼) = −𝑤

√
𝜇𝑜
𝜖

𝜎𝑣ℏ|𝑀21|2𝛤12
[(𝐸21 − ℏ𝑤)

2 + (ℏ𝛤12)
2]2

𝐼

2𝜖𝑜𝑛𝑟𝐶

×

[
4|𝑀21|2 −

|𝑀22−𝑀11|2[3𝐸2
21
−4𝐸21ℏ𝑤+ℏ

2(𝑤2−𝛤 2
12
)]

𝐸2
21
+(ℏ𝛤12)

2

]
,

(52)

where 𝐼 = 2𝜖𝑜𝑛𝑟𝑐|𝐸̃|2 represents the incident optical intensity with
𝑐 being the velocity of light in vacuum. The third-order non-linear
AC, 𝛼(3)(𝑤, 𝐼) is negative and also proportional to the incident optical
intensity. Due to spherical symmetry of the system, diagonal matrix
elements will be zero i.e., 𝑀𝑖𝑖 = 0.

The total AC is therefore written as a sum of linear and third-order
nonlinear AC [23,24]

𝛼(𝑤, 𝐼) = 𝛼1(𝑤) + 𝛼3(𝑤, 𝐼). (53)

Further, the RIC is connected to susceptibility through the relation
[66,67]

𝛥𝑛(𝑤)

𝑛𝑟
= 𝑅𝑒

(
𝜒(𝑤)

2𝑛2𝑟

)
. (54)

Using Eqs. (47), (48) and (54), expressions for linear and third-order
nonlinear RIC become

𝛥𝑛1(𝑤)

𝑛𝑟
=

1

2𝑛2𝑟 𝜖𝑜
|𝑀21|2𝜎𝑣

[
𝐸21 − ℏ𝑤

(𝐸21 − ℏ𝑤)
2 + (ℏ𝛤12)

2

]
, (55)

and

𝛥𝑛3(𝑤)

𝑛𝑟
= −

𝜎𝑣|𝑀21|2
4𝑛2𝑟 𝜖𝑜

𝜇𝑜𝑐𝐼

[(𝐸21 − ℏ𝑤)
2 + (ℏ𝛤12)

2]2{
4(𝐸21 − ℏ𝑤)|𝑀21|2 −

|𝑀22 −𝑀11|2
(𝐸21 − ℏ𝑤)

2 + (ℏ𝛤12)
2

× [(𝐸21 − ℏ𝑤)[𝐸21(𝐸21 − ℏ𝑤) − (ℏ𝛤12)
2]

− (ℏ𝛤12)
2(2𝐸21 − ℏ𝑤)]

}
.

(56)

From Eqs. (55) and (56), the expression for total RIC is written as

𝛥𝑛𝑡𝑜𝑡𝑎𝑙(𝑤)

𝑛𝑟
=
𝛥𝑛1(𝑤)

𝑛𝑟
+
𝛥𝑛3(𝑤)

𝑛𝑟
. (57)

Eqs. (27), (51)–(53) and (55)–(57) provide a framework for evaluating
the optical properties of the system without the influence of any
external fields. However, when considering the presence of magnetic
and AB flux fields, Eq. (40) becomes instrumental in determining the
energy eigenvalues. By utilizing Eq. (40) in conjunction with Eqs. (51),
(52), and (53), we can calculate the values of the linear, nonlinear, and
total AC in the presence of these external fields. Similarly, employing
Eq. (40) in conjunction with Eqs. (55), (56), and (57) enables us to
obtain the values of the linear, nonlinear, and total RIC under the
influence of the magnetic and AB flux fields. By employing these equa-
tions, we can systematically explore the optical properties of the system
under different conditions. The inclusion of magnetic and AB flux fields
provides valuable insight that how these external influences affect the
linear and nonlinear optical behavior, enabling a more comprehensive
understanding of the system’s response. This analytical approach allows
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Fig. 2. Variation of the transition energy (𝐸21) as a function of 𝑅𝑜.

Fig. 3. The dipole matrix element 𝑀21 as a function of 𝑅𝑜 with 𝑉𝑜 = 224.46 meV.

one, a precise calculation of the optical properties in the presence of
external fields, enhancing our ability to predict and adjust the system’s
behavior for various applications.

6. Results and discussions

In order to the describe optical properties of spherical GaAs QDs by
using the density matrix formalism following parameters are chosen:
refractive index, 𝑛𝑟=3.2, carrier density, 𝜎𝑣 = 5 × 1022 m−3, reduced
mass, 𝜇 = 0.067 𝑚𝑒 (where 𝑚𝑒 is the free electron mass), vacuum
permeability, 𝜇𝑜 = 12.56 × 10−7 H∕m, vacuum permittivity, 𝜖𝑜 = 8.85 ×

10−12 F∕m and inverse of the relaxation time, 𝛤12 =
1

𝑇12
with 𝑇12 = 0.14

ps [68]. The quantum numbers are chosen as 𝑛 = 0, 𝑙 = 0 and 𝑛 = 0, 𝑙 = 1

for the ground and first excited states, respectively.

6.1. In the absence of magnetic and AB flux fields

The graph between 𝐸21 and 𝑅𝑜, Fig. 2, demonstrates an anticipated
trend where an increase in 𝑅𝑜 is associated with a simultaneous reduc-
tion in 𝐸21. The matrix element 𝑀21 rises with an increase in 𝑅𝑜 as
illustrated in Fig. 3. We have additionally drawn the relationship be-
tween 𝐸21 and 𝑉0 in Fig. 4, considering three distinct values of 𝑅0. Our
observations indicate a positive correlation, with 𝐸21 demonstrating an
increase as 𝑉0 rises. Fig. 5 portrayed the variation of dipole transition
element with magnetic field.

To investigate the effect of 𝑅𝑜, we plot the linear, third-order
nonlinear and total AC as function of the incident photon energy (ℏ𝑤)
with optical intensity 𝐼 = 8×109 W∕m2 and potential height 𝑉𝑜 = 224.46

Fig. 4. The transition energy 𝐸21 as a function of 𝑉𝑜 for three different values of 𝑅𝑜.

Fig. 5. Variation of dipole transition element with magnetic field.

meV for three different values of 𝑅𝑜 as shown in Fig. 6. When ℏ𝑤 = 𝐸21,
the third-order nonlinear AC is at its lowest value and the linear along
with the total AC are at their maximum value. As 𝑅𝑜 increases, it is
observed that the maxima of the linear, third-order nonlinear, and total
optical AC move towards the lower energies (red shift). This is because
when 𝑅𝑜 increases, 𝐸21 decreases (cf Fig. 2).

With 𝑅𝑜 = 4 nm and 𝐼 = 8 × 109 W∕m2, the linear, third-order
nonlinear, and total AC are plotted in Fig. 7 for three different values
of 𝑉𝑜. With increase in 𝑉𝑜, it is observed that the position of resonant
peaks for all the three AC shift to the higher energies (blue shift), an
attribute of increase in 𝐸21 with increase in 𝑉𝑜 (cf Fig. 4). Fig. 8 depicts
the overall variation in total AC with ℏ𝜔 for different 𝐼 with 𝑅𝑜 = 4 nm

and 𝑉𝑜 = 224.46 meV. Here, it should be noted that with increase in 𝐼 ,
the amplitude of total AC decreases because the third-order nonlinear
AC is a negative parameter (cf Eq. (52)) and depends linearly on 𝐼 , but
the linear AC is independent of 𝐼 (cf Eq. (51)).

Thus the third-order nonlinear term dominates as 𝐼 increases, which
causes a drop in the total AC and a slight right shift in peak position of
total AC is observed. This observed shift in the resonance peak position
is attributed to the higher intensity of the incident light, which induces
a strong electric field in the QD region. This electric field, in turn,
causes a modulation in the energy levels of the QD, impacting the
absorption spectra and resulting in a displacement of the total AC peak
position. This shift is directed towards the higher energy side due to
interaction with the external electric field produces by higher intensity.

For various values of 𝑅𝑜, the variations of linear, third-order non-
linear and total RIC are illustrated in Fig. 9 with 𝑉𝑜 = 224.46 meV and
𝐼 = 8 × 109 W∕m2. For ℏ𝑤 = 𝐸21, the linear, third-order nonlinear, and
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Fig. 6. The linear (dashed line) 𝛼(1)(𝜔), third-order nonlinear (dotted line) 𝛼(3)(𝜔) and
total (solid line) 𝛼(𝜔) optical AC as a function of the incident photon energy (ℏ𝜔) for
three different values of 𝑅𝑜 with 𝑉𝑜 = 224.46 meV and 𝐼 = 8 × 109 Wm−2.

Fig. 7. The linear (dashed line) 𝛼(1)(𝜔), third-order nonlinear (dotted line) 𝛼(3)(𝜔) and
total (solid line) 𝛼(𝜔) optical AC as a function of the incident photon energy (ℏ𝜔) for
three different values of 𝑉𝑜 with fixed 𝑅𝑜 = 4 nm and 𝐼 = 8 × 109 Wm−2.

Fig. 8. The total AC 𝛼(𝜔) as a function of the incident photon energy (ℏ𝜔) for different
values of the 𝐼 with 𝑅𝑜 = 4 nm and 𝑉𝑜 = 224.46 meV.

total RIC reduces to zero. When 𝑅𝑜 increases, the peaks shift to lower
energies (red shift), the same is also observed in Fig. 2. Fo 𝐼 = 8 × 108

W∕m2 and 𝑅𝑜 = 4 nm, the linear, third-order nonlinear, and total RIC for
various values of 𝑉𝑜 are shown in Fig. 10. It shows that as 𝑉𝑜 increases,
peaks of the linear, third-order nonlinear, and total RIC move to higher
energies (blue shift). Shifting of the peaks is caused by increasing 𝑉𝑜,
which in turn enhances the 𝐸21 and this exploration is also confirmed

Fig. 9. Variation of (a) linear 𝛥𝑛(1)(𝜔)∕𝑛𝑟, (b) third-order nonlinear 𝛥𝑛
(3)(𝜔)∕𝑛𝑟 and (c)

total 𝛥𝑛(𝜔)∕𝑛𝑟 RIC as a function of the incident photon energy (ℏ𝜔) for different values
of 𝑅𝑜 with 𝑉𝑜 = 224.46 meV and 𝐼 = 8 × 109 Wm−2.

Fig. 10. Variation of (a) linear 𝛥𝑛(1)(𝜔)∕𝑛𝑟, (b) third-order nonlinear 𝛥𝑛
(3)(𝜔)∕𝑛𝑟 and

(c) total 𝛥𝑛(𝜔)∕𝑛𝑟 RIC as a function of the incident photon energy (ℏ𝜔) for different
𝑉𝑜 with 𝑅𝑜 = 4 nm and 𝐼 = 8 × 109 Wm−2.

by Fig. 4. Fig. 11 shows the variation of total RIC for different 𝐼 with
𝑅𝑜 = 4 nm and 𝑉𝑜 = 224.46 meV. As the linear RIC is independent to
𝐼 , Eq. (55) but third-order nonlinear RIC depends linearly, Eq. (56).
Thus, the total RIC, along with its magnitude and sign, changes as the
intensity rises. It is worth to note that at lower intensities, the linear
RIC dominates, while third-order nonlinear RIC dominates at higher
intensities.

6.2. In the presence of magnetic field only

Fig. 12 illustrates a plot depicting the variation of energy levels for
different quantum states (𝑚 = 0,±1) as a function of the magnetic field.
It reveals that separation between energy levels augmented with an
increase in the magnetic field strength. Fig. 13 presents a relationship
between the linear, non-linear, and total optical AC as a function of
ℏ𝜔 for three different values of 𝑅𝑜. For this analysis, we utilize the
parameters 𝑉𝑜 = 224.46 meV and 𝐵 = 1 𝑇 . The results indicate that
increasing 𝑅𝑜 leads to a red shift in the AC peak values while causing
a decrease in their magnitude. In Fig. 14, we plot the curves of the
linear, non-linear, and total RIC as functions of ℏ𝜔, with 𝐵 = 1 𝑇 and
𝑉𝑜 = 224.46 meV, for three different values of 𝑅𝑜. The resonance peak
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Fig. 11. Variation of total RIC 𝛥𝑛(𝜔)∕𝑛𝑟 as a function of the incident photon energy
(ℏ𝜔) for different 𝐼 with 𝑅𝑜 = 4 nm and 𝑉𝑜 = 224.46 meV.

Fig. 12. The energy (𝐸𝑛𝑚) of the quantum dot versus the magnetic field strength (𝐵)
with 𝑉𝑜 = 224.46 meV, 𝜂 = 0 and 𝑅𝑜 = 4 nm.

Fig. 13. The linear (dashed line), third order non-linear (dotted line) and total (solid
line) optical AC as a function of the photon energy (ℏ𝜔) with 𝑉𝑜 = 224.46 meV, 𝐵 = 1𝑇 ,
𝜂 = 0 and 𝐼 = 8 × 109 Wm−2.

values of the linear, non-linear, and total RIC decrease as 𝑅𝑜 increases.
Furthermore, the peak positions shift towards lower energies with an
increase in 𝑅𝑜.

Fig. 15 displays the curves of the linear, non-linear, and total optical
AC as functions of ℏ𝜔, for three different values of 𝑉𝑜. For this analysis,
we use 𝑅𝑜 = 4 nm and 𝐵 = 1𝑇 . The findings reveal that increasing
𝑉𝑜 of the QD results in a blue shift in the observed spectra while

Fig. 14. The (a) linear, (b) third-order nonlinear and (c) total RIC as a function of the
photon energy (ℏ𝜔) with 𝑉𝑜 = 224.46 meV, 𝐵 = 1𝑇 , 𝜂 = 0 and 𝐼 = 8 × 109 Wm−2.

Fig. 15. The linear (dashed line), third order non-linear (dotted line) and total (solid
line) optical AC as a function of the photon energy (ℏ𝜔) with 𝑅𝑜 = 4 nm, 𝐵 = 1𝑇 , 𝜂 = 0

and 𝐼 = 8 × 109 Wm−2.

simultaneously increasing the peak value of the AC. In Fig. 16, we plot
the curves of the linear, non-linear, and total RIC versus ℏ𝜔, with 𝐵 = 1

𝑇 and 𝑅𝑜 = 4 nm, for three different values of 𝑉𝑜. In both Figs. 15
and 16, it is observed that the peak positions of the AC and RIC are
shifted towards the blue end of the spectrum (higher energy) with an
increase in the magnetic field. This shift is attributed to the increase
in transition energy caused by the Zeeman effect, where the external
magnetic field influences the energy levels of the QD. The amplitudes
of both the AC and RIC increase with the rise in magnetic field. This
is explained by the enhanced overlap of wave functions between the
ground and first excited states of the QD [69]. The enhanced overlap
results in a larger dipole matrix element (cf Fig. 5), influencing the
transition probabilities and leading to higher peak amplitudes in the
absorption spectrum.

Fig. 17 illustrates curves of the linear, non-linear, and total optical
AC as functions of ℏ𝜔 for three different values of magnetic field. The
parameters used for this analysis are 𝑅𝑜 = 4 nm and 𝑉𝑜 = 224.46 meV.
The results demonstrate that an increase in the magnetic field 𝐵 leads
to a blue shift in the observed ℏ𝜔 and an increase in the peak value of
the AC. In Fig. 18, we present plots of the linear, non-linear, and total
RIC versus ℏ𝜔, with 𝑅𝑜 = 4 nm and 𝑉𝑜 = 224.46 meV, for three different
values of 𝐵. Similarly to the previous case, we observe a blue shift in
the spectra as 𝐵 increases. Here, we have investigated the influence



Physica B: Condensed Matter 676 (2024) 415654

9

M. Bansal et al.

Fig. 16. The (a) linear, (b) third order non-linear and (c) total RIC as a function of
the photon energy (ℏ𝜔) with 𝐵 = 1𝑇 , 𝜂 = 0 and 𝐼 = 8 × 109 Wm−2.

Fig. 17. The linear (dashed line), third order non-linear (dotted line) and total (solid
line) optical AC as a function of the photon energy (ℏ𝜔) with 𝑅𝑜 = 4 nm, 𝜂 = 0 and
𝑉𝑜 = 224.46 meV.

Fig. 18. The (a) linear, (b) third order non-linear and (c) total RIC as a function of
the photon energy (ℏ𝜔) with 𝑉𝑜 = 224.46 meV, 𝜂 = 0 and 𝐼 = 8 × 109 Wm−2.

of varying 𝑅𝑜 and 𝑉𝑜 on the AC and RIC, considering the presence
of a magnetic field. Our analysis reveals that the shifting behavior

Fig. 19. The energy (𝐸𝑛𝑚) of the quantum dot versus the AB flux field strength (𝜂)
with 𝑉𝑜 = 224.46 meV, 𝐵 = 0 𝑇 and 𝑅𝑜 = 4 nm.

Fig. 20. The linear (dashed line), third order non-linear (dotted line) and total (solid
line) optical AC as a function of the photon energy (ℏ𝜔) with 𝑉𝑜 = 224.46 meV, 𝜂 = 0.5,
𝐵 = 0𝑇 and 𝐼 = 8 × 109 Wm−2.

of the AC and RIC follows a similar trend to that observed in the
absence of a magnetic field. However, a notable distinction arises in the
positions of resonant peaks, which manifest higher energy values. This
disparity can be attributed to the substantial increase in the separation
between energy levels, as depicted in Fig. 12, in response to the applied
magnetic field.

6.3. In the presence of AB flux field only

In Fig. 19, we present a graph illustrating the energy levels for
various quantum states (𝑚 = 0,±1) as a function of the AB flux field.
Our analysis reveals a distinct trend, where an increase in the AB flux
field leads to more separation between energy levels. Fig. 20 presents
a relationship between linear, non-linear, and total optical AC as a
function of ℏ𝜔 for three different values of 𝑅𝑜. For this case, we utilize
the parameters 𝑉𝑜 = 224.46 meV and 𝜂 = 0.5. The results indicate that
increasing 𝑅𝑜 leads to a red shift in AC peak values while causing a
decrease in their magnitude. Fig. 21 depicts the curves of linear, non-
linear, and total RIC as functions of ℏ𝜔, with 𝜂 = 0.5 and 𝑉𝑜 = 224.46

meV, for three different values of 𝑅𝑜. The resonance peak values of
linear, non-linear, and total RIC decrease as 𝑅𝑜 increases. Furthermore,
the peak positions shift towards lower energies with an increase in 𝑅𝑜.

Fig. 22 displays the curves of linear, non-linear, and the total optical
AC as functions of ℏ𝜔. For this analysis, we use 𝑅𝑜 = 4 nm and 𝜂 = 0.5.
The findings reveal that increasing the potential height 𝑉𝑜 of the QD
results in a blue shift in the observed spectra while simultaneously
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Fig. 21. The (a) linear, (b) third order non-linear and (c) total RIC as a function of
the photon energy (ℏ𝜔) with 𝑉𝑜 = 224.46 meV, 𝜂 = 0.5, 𝐵 = 0 𝑇 and 𝐼 = 8 × 109 Wm−2.

Fig. 22. The linear (dashed line), third order non-linear (dotted line) and total (solid
line) optical AC as a function of the photon energy (ℏ𝜔) with 𝑅𝑜 = 4 nm, 𝜂 = 0.5, 𝐵 = 0

𝑇 and 𝐼 = 8 × 109 Wm−2.

increasing the peak value of the AC. In Fig. 23, we plot the curves of
linear, non-linear, and total RIC versus ℏ𝜔, with 𝜂 = 0.5 and 𝑅𝑜 =

4 nm, for three different values of 𝑉𝑜. Here, it is observed that the
peak positions shift towards higher energies as 𝑉𝑜 increases. Fig. 24
illustrates the curves of linear, non-linear, and total AC as functions of
ℏ𝜔. The parameters used for this analysis are 𝑅𝑜 = 4 nm and 𝑉𝑜 = 224.46

meV. The findings demonstrate that an increase in the AB flux field
leads to a blue shift in the observed ℏ𝜔 and an increase in the peak
values of the AC. Fig. 25 represents the curves of linear, non-linear,
and total RIC versus ℏ𝜔, with 𝑅𝑜 = 4 nm and 𝑉𝑜 = 224.46 meV, for
three different values of 𝜂. Similar to the previous case, we observe a
blue shift as 𝜂 increases.

Here, we have conducted an in-depth investigation into the impact
of varying 𝑅𝑜 and 𝑉𝑜 on AC and RIC, while considering the presence of
an AB flux field. Our analysis demonstrates that the shifting behavior
of the AC and RIC in the presence of an AB flux field follows a
similar trend to that observed without the AB flux field. However, a
distinct feature emerges in the position of the resonant peaks, which
occur at higher energy values. This distinction can be attributed to the
significant increase in the separation between energy levels induced by
the AB flux field, as evidenced in Fig. 19.

Fig. 23. The (a) linear, (b) third order non-linear and (c) total RIC as a function of
the photon energy (ℏ𝜔) with 𝑅𝑜 = 4 nm, 𝜂 = 0.5, 𝐵 = 0 𝑇 and 𝐼 = 8 × 109 Wm−2.

Fig. 24. The linear (dashed line), non-linear (dotted line)and total (solid line) optical
AC as a function of the photon energy (ℏ𝜔) with 𝑅𝑜 = 4 nm, 𝑉𝑜 = 224.46 meV, 𝐵 = 0𝑇

and 𝐼 = 8 × 109 Wm−2.

Fig. 25. The (a) linear, (b) third order non-linear and (c) total RIC as a function of
the photon energy with 𝑅𝑜 = 4 nm, 𝑉𝑜 = 224.46 meV, 𝐵 = 0𝑇 and 𝐼 = 8 × 109 Wm−2.

6.4. In the presence of magnetic and AB flux fields

As a final analysis, we examine the scenario where magnetic and
AB flux fields coexist. Fig. 26 illustrates the overall values of AC, while
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Fig. 26. The total AC as a function of the photon energy with 𝑅𝑜 = 4 nm, 𝑉𝑜 = 224.46

meV and 𝐼 = 8 × 109 Wm−2.

Fig. 27. The Total RIC as a function of the photon energy with 𝑅𝑜 = 4 nm, 𝑉𝑜 = 224.46

meV and 𝐼 = 8 × 109 Wm−2.

Fig. 27 depicts the total RIC. As shown in Fig. 26, the peak position of
AC with 𝐵 = 1𝑇 and 𝜂 = 1 lies between the peaks of AC for 𝐵 = 1𝑇 ,
𝜂 = 0 and 𝐵 = 0, 𝜂 = 1. Similarly, as depicted in Fig. 27, the peak
position of RIC with 𝐵 = 1𝑇 and 𝜂 = 1 is located between the peaks of
AC for 𝐵 = 1𝑇 , 𝜂 = 0 and 𝐵 = 0𝑇 , 𝜂 = 1. In Figs. 26 and 27, it was noted
that the peak energy is maximized when 𝐵 = 1𝑇 and 𝜂 = 0, while the
minimum energy position is associated with 𝐵 = 0 and 𝜂 = 1.

7. Conclusions

In this study, we have conducted comprehensive investigations into
the linear and nonlinear optical properties of spherical GaAs quan-
tum dots subjected to the inverse quadratic Hellmann plus Yukawa
potential, employing the density matrix formalism. By solving the
radial SE using the Nikiforov-Uvarov functional analysis method, we
have obtained the energy eigenvalues and eigenfunctions, enabling a
detailed analysis of the optical behavior of the system. Our findings
demonstrate that by varying the QD’s radius and potential height, it
is possible to achieve pronounced shifts in the optical energy spectra.
Specifically, adjustments in these parameters lead to either a blue or red
shift in the observed spectra. Additionally, we have observed that the
optical absorption coefficients and refractive index changes are notably
influenced by the incident light intensity.

Furthermore, we have found that, compared to alternative potential
models, the nonlinear components in our results exhibit relatively re-
duced magnitudes for various coefficients, suggesting distinctive char-
acteristics associated with the IQHY potential. Expanding upon our

investigations, we have extended our analysis to include the effects
of a magnetic field and Aharonov–Bohm flux field on the linear and
nonlinear optical properties of the GaAs QDs. Our results reveal a strong
correlation between the magnetic field strength and the separation
between energy levels, ultimately leading to a prominent blue shift
in the optical energy spectra. Similarly, the AB flux field induces a
comparable blue shift effect. These noteworthy observations underscore
the substantial influence exerted by magnetic and AB flux fields on
the linear and nonlinear optical properties of GaAs QDs. We hope
that present theoretical results would play important role in future
theoretical and experimental studies related to QDs.
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Exact quadratic in momenta complex invariants are investigated for both time independent

and time dependent one-dimensional Hamiltonian systems possessing higher order nonlinearities

within the framework of the rationalization method. The extended complex phase space approach
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in the analysis of complex trajectories and help to understand some new phenomena associated
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1. Introduction

The dynamics of an integrable system can be understood in terms of real invariants
of the system. In the past, several efforts have been made to explore the role of invari-
ants in the qualitative study of classical as well as quantum dynamical systems. The
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availability and subsequently investigation (if possible) of invariants for a given system
is of immense importance to understand the underlying dynamics of the system [1–7].

Several authors have studied the construction of invariant for one- and two-
dimensional Hamiltonian systems. Invariants play an important role in different
fields, viz. laser physics, plasma physics, fiber optics, astrophysics, accelerator
physics, condensed matter physics and biophysics [7–9]. Invariants, in particular, are
used to lower the order of differential equations, to check the accuracy of numerical
simulations of time dependent Hamiltonian systems [10, 11], stability of differential
equations [12, 13] etc. The higher order invariants give the idea of the internal
symmetry of physical systems specially in molecular dynamics [14, 15].

Information related to various physical properties of a dynamical system can
be obtained by its real Hamiltonian representation, however some other aspects
of a dynamical system can be ascertained effectively by considering its complex
Hamiltonian form only [16, 17]. As far as a complex Hamiltonian is concerned,
it is studied in the context of quantum mechanics and semiclassical field theories.
So it is necessary to understand such systems at classical level too, and thus
investigation of the associated dynamical invariants open new vistas in the field of
both classical and quantum mechanics [2, 7]. It is also seen that a complex invariant
exists for a real system too (simple harmonic oscillator, 𝐼 = ln(𝑝 + 𝑖𝑚𝜔𝑥) − 𝑖𝜔𝑡)
and integrability of such systems requires further investigation. Real invariants exist
under some prescription but there is no such prescription for complex invariants.
Complex Hamiltonians are used in various branches of physics, namely in atomic
and molecular physics, nuclear physics, population biology, chemical reactions and
flux transitions in type-II superconductors [18–21].

For complex Hamiltonian systems, various complexification schemes are available
in literature [7, 22–24]. One such approach, known as extended complex phase
space (ECPS) approach and characterized by

𝑥 = 𝑥1 + 𝑖𝑝2, 𝑝 = 𝑝1 + 𝑖𝑥2, (1)

has been profitably explored by many workers in different studies [7, 9, 25].
Many authors utilized this scheme to study quantum aspects of various complex
Hamiltonians by calculating eigenvalues and corresponding eigenfunctions [26–30],
whereas, the classical aspects are discussed by Kaushal et al. [31, 32] for low
order potentials only and not much attempts are made on higher order anharmonic
potentials. In fact, quadratic invariants are widely studied because of their resemblance
with system’s Hamiltonian whose kinetic energy part is also quadratic in momenta.
Naturally one can be curious to look for higher-order invariants and their possible
implications in different branches of natural sciences. Such studies can also be
applied to check the veracity of the existing methods for construction of invariants.
In this direction, many authors worked out cubic and quartic invariants and their
applications [2, 7, 33]. The higher-order invariants are particularly interesting for
establishing super integrability of dynamical systems [34, 35].

In the past, some authors have also investigated invariants for some classical
systems [36–45], within the framework of ECPS approach. But majority of the



HIGHER ORDER POLYNOMIAL COMPLEX INVARIANTS FOR ONE-DIMENSIONAL. . . 73

work is limited to lower order time-independent (TID) potentials. So extension of
such work to higher order TID and time dependent (TD) anharmonic potentials is
desirable. With this motivation, we investigate the corresponding dynamical invariant
for various TID complex potentials like quartic, odd power quintic and even power
sextic potentials by exploiting the rationalization method.

Recently, Struckmeir and Riedel (SR) proposed an elegant technique to determine
TD quadratic invariants and utilised such invariants to check the numerical accuracy
of simulation of some Hamiltonian systems [10, 11]. Here we extend this approach,
first time to the best of our knowledge, for complex Hamiltonian systems and find
TD invariants for a general one-dimensional TD quartic potential which has been
extensively used earlier by many authors [10, 11, 39] for variety of real and complex
invariants for classical dynamical systems.

The present work is structured like this. In Section 2, we describe the ratio-
nalization method in ECPS and construct quadratic TID invariants for quartic, odd
power quintic and even power sextic potentials. Then, in Section 3, we illustrate
S-R approach to construct complex invariants for TD quartic anharmonic potential.
Finally concluding remarks are presented in Section 4.

2. The rationalization method

In this section, we develop the rationalization method within the framework
of ECPS approach for the investigation of exact quadratic invariants for some
higher-order anharmonic potentials.

A complex Hamiltonian 𝐻 (𝑥, 𝑝) for a dynamical system is written as [25]

𝐻 (𝑥, 𝑝) = 𝐻1 (𝑥1, 𝑝1, 𝑥2, 𝑝2) + 𝑖𝐻2 (𝑥1, 𝑝1, 𝑥2, 𝑝2) . (2)

Employing the transformations (1), we obtain

𝑑

𝑑𝑥
=

1

2

(

𝜕

𝜕𝑥1

− 𝑖
𝜕

𝜕𝑝2

)

,
𝑑

𝑑𝑝
=

1

2

(

𝜕

𝜕𝑝1

− 𝑖
𝜕

𝜕𝑥2

)

. (3)

The invariant 𝐼 (𝑥, 𝑝) in ECPS is written as

𝐼 (𝑥, 𝑝) = 𝐼1 (𝑥1, 𝑝1, 𝑥2, 𝑝2) + 𝑖𝐼2 (𝑥1, 𝑝1, 𝑥2, 𝑝2) . (4)

For the existence of invariant, the system must satisfy following invariance relation

𝑑𝐼

𝑑𝑡
=

𝜕𝐼

𝜕𝑡
+ [𝐼, 𝐻] = 0, (5)

where [𝐼, 𝐻] is the Poisson bracket.
After using Eqs. (2)–(4) in Eq. (5) and on rationalizing the resultant expression

and after separating real and imaginary parts, the following pair of equations is
obtained

𝜕𝑡 𝐼1 +
(

𝜕𝑥1
𝐼1 + 𝜕𝑝2

𝐼2
) (

𝜕𝑝1
𝐻1 + 𝜕𝑥2

𝐻2

)

−
(

𝜕𝑥1
𝐼2 − 𝜕𝑝2

𝐼1
) (

𝜕𝑝1
𝐻2 − 𝜕𝑥2

𝐻1

)

−
(

𝜕𝑝1
𝐼1 + 𝜕𝑥2

𝐼2
) (

𝜕𝑥1
𝐻1 + 𝜕𝑝2

𝐻2

)

+
(

𝜕𝑝1
𝐼2 − 𝜕𝑥2

𝐼1
) (

𝜕𝑥1
𝐻2 − 𝜕𝑝2

𝐻1

)

= 0, (6)
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𝜕𝑡 𝐼2 +
(

𝜕𝑥1
𝐼2 − 𝜕𝑝2

𝐼1
) (

𝜕𝑝1
𝐻1 + 𝜕𝑥2

𝐻2

)

+
(

𝜕𝑥1
𝐼2 + 𝜕𝑝2

𝐼2
) (

𝜕𝑝1
𝐻2 − 𝜕𝑥2

𝐻1

)

−
(

𝜕𝑝1
𝐼2 − 𝜕𝑥2

𝐼1
) (

𝜕𝑥1
𝐻1 + 𝜕𝑝2

𝐻2

)

−
(

𝜕𝑝1
𝐼1 + 𝜕𝑥2

𝐼2
) (

𝜕𝑥1
𝐻2 − 𝜕𝑝2

𝐻1

)

= 0. (7)

If the system is explicitly time independent, then 𝜕𝑡 𝐼1 and 𝜕𝑡 𝐼2 become zero in
Eqs. (6) and (7) and the complex invariant for a system is obtained by transforming
the given Hamiltonian 𝐻 with (1).

The recipe to construct an invariant for a Hamiltonian system using rationalization
method, in brief, is as follows. Choose a proper form of invariant 𝐼, in general,
a polynomial in momenta, with some space and time dependent unknown co-
efficients. By separating the real and imaginary parts of 𝐻 and 𝐼, i.e. 𝐻1, 𝐻2, 𝐼1
and 𝐼2 respectively, insert these real and imaginary parts in Eqs. (6) and (7) and
subsequently the rationalization of the resultant expressions in powers of 𝑝1, 𝑥2

and of their products yields a set of coupled partial differential equations (PDEs)
for arbitrary co-efficient functions appearing in 𝐼1 and 𝐼2. Next, solve these PDEs
successively for various coefficients. In the end, substitute these solutions in Eq. (4)
to find the final form of an invariant 𝐼.

2.1. Invariants for TID Hamiltonian systems

We now construct complex dynamical invariants for a variety of TID potentials
like quartic, odd power quintic and even power sextic potentials by employing the
above described procedure.

2.1.1. Invariants for a quartic potential

Consider the Hamiltonian for a general one-dimensional complex quartic potential
as

𝐻 (𝑥) = 𝑝2 + 𝜂1𝑥 + 𝜂2𝑥
2 + 𝜂3𝑥

3 + 𝜂4𝑥
4, (8)

where 𝜂𝑖 (𝑖 = 1, 2, 3, 4) are arbitrary constant potential parameters.
After employing Eq. (1) in Eq. (8), the real and imaginary parts of 𝐻 are

separately written as

𝐻1 = (𝑝2
1 − 𝑥2

2) − 𝜂1𝑥1 + 𝜂2

(

𝑥2
1 − 𝑝2

2

)

+ 𝜂3𝑥1

(

𝑥2
1 − 3𝑝2

2

)

+ 𝜂4

(

𝑥4
1 − 6𝑥2

1𝑝
2
2 + 𝑝4

2

)

, (9)

𝐻2 = 2𝑝1𝑥2 + 𝜂1𝑝2 + 2𝜂2𝑥1𝑝2 + 𝜂3𝑝2

(

−𝑝2
2 + 3𝑥2

1

)

+ 4𝜂4𝑥1𝑝2

(

𝑥2
1 − 𝑝2

2

)

. (10)

Next, suppose the system (8) possesses an invariant, a second-order polynomial in
momenta, of the form

𝐼 = 𝑎(𝑥) + 𝑏(𝑥) 𝑝2, (11)

where 𝑎(𝑥) and 𝑏(𝑥) are complex functions of position of the form 𝑎(𝑥) =

𝑎𝑟 (𝑥) + 𝑖 𝑎𝑖 (𝑥) and 𝑏(𝑥) = 𝑏𝑟 (𝑥) + 𝑖 𝑏𝑖 (𝑥).
Under the transformation (1), the real and imaginary parts of Eq. (11) are

respectively written as

𝐼1 = 𝑎𝑟 + 𝑏𝑟
(

𝑝2
1 − 𝑥2

2

)

− 2𝑏𝑖𝑝1𝑥2, (12)

𝐼2 = 𝑎𝑖 + 𝑏𝑖
(

𝑝2
1 − 𝑥2

2

)

+ 2𝑏𝑟 𝑝1𝑥2. (13)
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Substituting Eqs. (9), (10), (12) and (13) in Eq. (6) and then after rationalization
of the resultant expression, the following set of equations is obtained:

𝜕𝑥1
𝑏𝑟 + 𝜕𝑝2

𝑏𝑖 = 0, (14)

𝜕𝑥1
𝑏𝑖 − 𝜕𝑝2

𝑏𝑟 = 0, (15)

(𝜕𝑥1
𝑎𝑟 + 𝜕𝑝2

𝑎𝑖) − 2𝑏𝑟
[

𝜂1 + 2𝜂2𝑥1 + 3𝜂3

(

𝑥2
1 − 𝑝2

2

)

+ 4𝜂4𝑥1

(

𝑥2
1 − 3𝑝2

2

) ]

+ 4𝑏𝑖𝑝2

[

−𝜂2 + 3𝜂3𝑥1 + 2𝜂4𝑝2(3𝑥
2
1 − 𝑝2

2)
]

= 0, (16)

(𝜕𝑝2
𝑎𝑟 − 𝜕𝑥1

𝑎𝑖) + 2𝑏𝑖
[

𝜂1 + 2𝜂2𝑥1 + 3𝜂3

(

𝑥2
1 − 𝑝2

2

)

+ 4𝜂4𝑥1

(

𝑥2
1 − 3𝑝2

2

) ]

+ 4𝑏𝑟 𝑝2

[

𝜂2 + 3𝜂3𝑥1 + 2𝜂4𝑝2

(

3𝑥2
1 − 𝑝2

2

) ]

= 0. (17)

To obtain the invariant 𝐼, the arbitrary coefficients present in Eqs. (12) and (13)
are to be determined on solving Eqs. (14)–(17).

(i) Solutions of 𝑏𝑟 and 𝑏𝑖: The partial differential equations (14) and (15) can
be reduced to similar second order partial differential equations as

𝜕2
𝑥1
𝑏𝑟 + 𝜕2

𝑝2
𝑏𝑟 = 0, (18)

𝜕2
𝑥1
𝑏𝑖 + 𝜕2

𝑝2
𝑏𝑖 = 0. (19)

The coordinate separability for 𝑏𝑟 and 𝑏𝑖 under addition is given by

𝑏𝑟 = 𝑋𝑟 (𝑥1) + 𝑃𝑟 (𝑝2), 𝑏𝑖 = 𝑋𝑖 (𝑥1) + 𝑃𝑖 (𝑝2). (20)

Under the assumption of separability condition (20), solutions of Eqs. (18) and (19)
can be written as

𝑏𝑟 = 𝛽
(

𝑥2
1 − 𝑝2

2

)

+ 𝛽1𝑝2 − 𝛽2𝑥1 + 𝜁1, (21)

𝑏𝑖 = 𝛾
(

𝑥2
1 − 𝑝2

2

)

+ 𝛽1𝑥1 − 𝛽2𝑝2 + 𝜁2, (22)

where, 𝛾, 𝛽, 𝛽1, 𝛽2, 𝜁1, and 𝜁2 are arbitrary constants of integration.

(ii) Solutions of 𝑎𝑟 and 𝑎𝑖: After differentiating Eqs. (16) and (17) w.r.t. 𝑥1

and 𝑝2 respectively and then adding, one gets

𝜕2
𝑥1
𝑎𝑟 + 𝜕2

𝑝2
𝑎𝑟 + 2

[

−𝜕𝑥1
𝑏𝑟 + 𝜕𝑝2

𝑏𝑖
] [

𝜂1 + 2𝜂2𝑥1 + 3𝜂3(𝑥
2
1 − 𝑝2

2) + 4𝜂4𝑥1(𝑥
2
1 − 3𝑝2

2)
]

+ 4
(

𝜕𝑥1
𝑏𝑖 + 𝜕𝑝2

𝑏𝑟
)

𝑝2

[

2𝜂2 + 3𝜂3𝑥1 + 2𝜂4(3𝑥
2
1 − 𝑝2

2)
]

= 0. (23)

Further, using Eqs. (21) and (22) in Eq. (23) and employing the condition (20), we
obtain

𝑎𝑟 =
4

5
𝜂4

[ (

−𝛽2𝑥
5
1 + 𝛽1𝑝

5
2

)

+5𝑥1𝑝2

(

−𝛽1𝑥
3
1 + 𝛽2𝑝

3
2

) ]

−𝜂3

[

𝛽2

(

𝑥4
1 − 𝑝4

2

)

−2𝛽1𝑥1𝑝2

(

𝑥2
1 + 𝑝

2
2

) ]

−
2

3
𝜂2

[ (

𝛽2𝑥
3
1 + 𝛽1𝑝

3
2

)

− 6𝑥1𝑝2

(

𝛽2𝑝2 + 𝛽1𝑥1

) ]

− 𝛽2𝜂1

(

𝑥2
1 + 𝑝2

2

)

. (24)
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Similarly, 𝑎𝑖 is computed as

𝑎𝑖 =
4

5
𝜂4

[ (

𝛽1𝑥
5
1 + 𝛽2𝑝

5
2

)

− 5𝑥1𝑝2

(

𝛽2𝑥
3
1 + 𝛽1𝑝

3
2

) ]

+ 𝜂3

[

𝛽1

(

𝑥4
1 − 𝑝4

2

)

− 2𝛽2𝑥1𝑝2(𝑥
2
1 + 𝑝2

2)
]

+
2

3
𝜂2

[ (

𝛽1𝑥
3
1 − 𝛽2𝑝

3
2

)

+ 6𝑥1𝑝2

(

𝛽1𝑝2 − 𝛽2𝑥1

) ]

+ 𝛽1𝜂1

(

𝑥2
1 + 𝑝2

2

)

. (25)

On employing the arbitrary coefficients, i.e. 𝑎𝑟 , 𝑎𝑖, 𝑏𝑟 and 𝑏𝑖, in Eqs. (12) and (13),
𝐼1 and 𝐼2 are written as

𝐼1 =
4

5
𝜂4

[ (

−𝛽2𝑥
5
1 + 𝛽1𝑝

5
2

)

+ 5𝑥1𝑝2

(

−𝛽1𝑥
3
1 + 𝛽2𝑝

3
2

) ]

− 𝜂3

[

𝛽2(𝑥
4
1 − 𝑝4

2) − 2𝛽1𝑥1𝑝2(𝑥
2
1 + 𝑝2

2)
]

−
2

3
𝜂2

[

(𝛽2𝑥
3
1 + 𝛽1𝑝

3
2) − 6𝑥1𝑝2(𝛽2𝑝2 + 𝛽1𝑥1)

]

− 𝛽2𝜂1

(

𝑥2
1 + 𝑝2

2

)

+
(

𝛽1𝑝2 − 𝛽2𝑥1

) (

𝑝2
1 − 𝑥2

2

)

− 2
(

𝛽1𝑥1 − 𝛽2𝑝2

)

𝑝1𝑥2, (26)

and

𝐼2 =
4

5
𝜂4

[ (

𝛽1𝑥
5
1 + 𝛽2𝑝

5
2

)

− 5𝑥1𝑝2

(

𝛽2𝑥
3
1 + 𝛽1𝑝

3
2

) ]

+ 𝜂3

[

𝛽1(𝑥
4
1 − 𝑝4

2) − 2𝛽2𝑥1𝑝2

(

𝑥2
1 + 𝑝2

2

) ]

+
2

3
𝜂2

[ (

𝛽1𝑥
3
1 − 𝛽2𝑝

3
2

)

+ 6𝑥1𝑝2

(

𝛽1𝑝2 − 𝛽2𝑥1

) ]

+ 𝛽1𝜂1

(

𝑥2
1 + 𝑝2

2

)

+
(

𝛽1𝑥1 − 𝛽2𝑝2

) (

𝑝2
1 − 𝑥2

2

)

+ 2
(

𝛽1𝑝2 − 𝛽2𝑥1

)

𝑝1𝑥2. (27)

After inserting Eqs. (26) and (27) in Eq. (4), the invariant 𝐼 is given by

𝐼 = Ω

[

−
1

5
𝜂4𝑥

∗(𝑥∗4 − 5𝑥4) + 𝜂3𝑥
∗𝑥3 −

1

3
𝜂2𝑥

∗
(

𝑥∗2 − 3𝑥2
)

+ 𝜂1𝑥𝑥
∗ + 𝑥∗𝑝2

]

, (28)

where 𝑥∗ = 𝑥1 − 𝑖𝑝2, Ω = −𝛽2 + 𝑖𝛽1 is an arbitrary constant, which conforms the
integrability condition (6) and (7).

2.1.2. Invariants for an odd power quintic potential

For one-dimensional odd power quintic potential, the Hamiltonian is written as

𝐻 (𝑥) = 𝑝2 + 𝜂1𝑥 + 𝜂3𝑥
3 + 𝜂5𝑥

5. (29)

Using transformation (1), the real and imaginary parts of Eq. (29) are written as

𝐻1 = (𝑝2
1 − 𝑥2

2) + 𝜂1𝑥1 + 𝜂3𝑥1

(

𝑥2
1 − 3𝑝2

2

)

+ 𝜂5𝑥1

(

𝑥5
14 − 10𝑥3

12𝑝2
2 + 5𝑝4

2

)

, (30)

𝐻2 = 2𝑝1𝑥2 + 𝜂1𝑝2 + 𝜂3𝑝2

(

−𝑝2
2 + 3𝑥2

1

)

+ 𝜂5𝑝2

(

𝑝4
2 + 5𝑥4

1𝑝 − 10𝑥2
1𝑝

2
2

)

. (31)

Again, suppose that this system (29) owns an invariant of the form (11). Now,
employing Eqs. (12), (13), (30) and (31) in Eq. (6) and then on rationalization the
resulting expression, one finds the following two equations, in addition to Eqs. (14)
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and (15), as

(𝜕𝑥1
𝑎𝑟 + 𝜕𝑝2

𝑎𝑖) − 2𝑏𝑟
[

𝜂1 + 3𝜂3(𝑥
2
1 − 𝑝2

2) + 5𝜂5(𝑥
4
1 − 6𝑥2

1𝑝
2
2 + 𝑝4

2)
]

+ 4𝑏𝑖𝑥1𝑝2

[

3𝜂3 + 10𝜂5(𝑥
2
1 − 𝑝2

2)
]

= 0, (32)

(𝜕𝑝2
𝑎𝑟 − 𝜕𝑥1

𝑎𝑖) + 2𝑏𝑖
[

𝜂1 + 3𝜂3(𝑥
2
1 − 𝑝2

2) + 5𝜂5(𝑥
4
1 − 6𝑥2

1𝑝
2
2 + 𝑝4

2)
]

+ 4𝑏𝑟𝑥1𝑝2

[

3𝜂3 + 10𝜂5(𝑥
2
1 − 𝑝2

2)
]

= 0. (33)

From Eqs. (32) and (33), we easily obtain the following

𝜕2
𝑥1
𝑎𝑟 + 𝜕2

𝑝2
𝑎𝑟 − 2(𝜕𝑥1

𝑏𝑟 − 𝜕𝑝2
𝑏𝑖)

[

𝜂1 + 3𝜂3(𝑥
2
1 − 𝑝2

2) + 5𝜂5(𝑥
4
1 − 6𝑥2

1𝑝
2
2 + 𝑝4

2)
]

+ 4𝑥1𝑝2(𝜕𝑥1
𝑏𝑖 − 𝜕𝑝2

𝑏𝑟
[

3𝜂3 + 10𝜂5(𝑥
2
1 − 𝑝2

2)
]

= 0. (34)

After, using Eqs. (21) and (22) in Eq. (34), one obtains

𝑎𝑟 =−𝛽2𝜂5

[

𝑥6
1 + 𝑝6

2 − 5𝑥2
1𝑝

2
2(𝑥

2
1𝑝

2
2 + 𝑥2

1𝑝
2
2)
]

− 4𝛽1𝜂5𝑥1𝑝2

(

𝑥4
1 − 𝑝4

2

)

− 2𝛽1𝜂3𝑥1𝑝2

(

𝑥2
1 + 𝑝2

2

)

− 𝛽2𝜂3

(

𝑥4
1 − 𝑝4

2

)

− 𝛽2𝜂1

(

𝑥2
1 + 𝑝2

2

)

. (35)

Similarly, one can find

𝑎𝑖 =−4𝛽2𝑥1𝑝2

[

1

2
𝜂3(𝑥

2
1 + 𝑝2

2) + 𝜂5(𝑥
4
1 − 𝑝4

2)

]

− 4𝛽1

[

𝜂1(𝑥
2
1 + 𝑝2

2) + 𝜂3(𝑥
4
1 − 𝑝4

2)

+ 𝜂5(𝑥
6
1 + 𝑝6

2) − 5𝑥2
1𝑝

2
2(𝑥

2
1 + 𝑝2

2)
]

, (36)

Using Eqs. (21) and (22) along with Eqs. (35) and (36) in Eqs. (12) and (13), we
find

𝐼1 =− 𝛽2𝜂5

(

𝑥6
1 + 𝑝6

2 − 5𝑥2
1𝑝

2
2(𝑥

2
1 + 𝑝2

2)
)

− 2𝛽1𝑥1𝑝2

(

2𝜂5(𝑥
4
1 − 𝑝4

2) − 𝜂3(𝑥
2
1 + 𝑝3

22)
)

− 𝛽2

(

𝜂3(𝑥
4
1 − 𝑝4

2) − 𝜂1(𝑥
2
1 + 𝑝2

2)
)

+
(

𝛽1𝑝2 − 𝛽2𝑥1

) (

𝑝2
1 − 𝑥2

2

)

− 2
(

𝛽1𝑥1 + 𝛽2𝑝2

)

𝑝1𝑥2, (37)

𝐼2 =− 2𝛽2𝑥1𝑝2

[

𝜂3(𝑥
2
1 + 𝑝2

2) + 2𝜂5(−𝑥
4
1 − 𝑝4

2)
]

+ 𝛽1

[

𝜂1(𝑥
2
1 + 𝑝2

2) + 𝜂3(𝑥
4
1 − 𝑝4

2) + 𝜂5(𝑥
6
1 + 𝑝6

2 − 5𝑥2
1𝑝

2
2(𝑥

2
1 + 𝑝2

2))
]

+ (𝛽1𝑥1 − 𝛽2𝑝2) (𝑝
2
1 − 𝑥2

2) + 2(𝛽1𝑝2 − 𝛽2𝑥1)𝑝1𝑥2. (38)

Finally, the invariant (𝐼 = 𝐼1 + 𝜄𝐼2) is written as

𝐼 = Ω𝑥∗
[

𝜂5𝑥
5 + 𝜂3𝑥

3 + 𝜂1𝑥 + 𝑝2
]

, (39)

where 𝑥∗ = 𝑥1 − 𝑖𝑝2 and Ω = −𝛽2 + 𝑖𝛽1 is arbitrary coefficient which conforms the
integrability condition.

2.1.3. Invariants for an even power sextic potential

The Hamiltonian for one-dimensional even power sextic potential is written as

𝐻 (𝑥) = 𝑝2 + 𝜂2𝑥
2 + 𝜂4𝑥

4 + 𝜂6𝑥
6. (40)
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From Eqs. (1) and (40) we have

𝐻1 = (𝑝2
1
−𝑥2

2
) −𝜂2

(

𝑥2
1
− 𝑝2

2

)

+𝜂4

(

𝑥4
1
−6𝑥2

1
𝑝2

2
+ 𝑝4

2

)

+𝜂6

(

𝑥6
1
−15𝑥4

1
𝑝2

2
+15𝑥2

1
𝑝4

2
− 𝑝6

2

)

(41)

𝐻2 = 2𝑝1𝑥2 + 2𝜂2𝑥1𝑝2 + 4𝑥1𝑝2𝜂4

(

𝑥2
1 − 𝑝2

2

)

+ 2𝜂6𝑥1𝑝2

(

3𝑥4
1 − 10𝑥2

1𝑝
2
2 + 3𝑝4

2

)

. (42)

Again using Eqs. (12), (13), (41) and (42) in Eq. (6) and then after rationalization,
the following equations are obtained in addition to Eqs. (14) and (15) as

(𝜕𝑥1
𝑎𝑟 + 𝜕𝑝2

𝑎𝑖) − 2𝑏𝑟𝑥1

[

−2𝜂2 + 4𝜂4(𝑥
2
1 − 3𝑝2

2) − 6𝜂6(𝑥
4
1 − 10𝑥2

1𝑝
2
2 + 5𝑝4

2)
]

+ 4𝑏𝑖𝑝2

[

−𝜂2 + 2𝜂4(3𝑥
2
1 − 𝑝2

2) − 3𝜂6(5𝑥
4
1 − 10𝑥2

1𝑝
2
2 + 𝑝4

2)
]

= 0, (43)

(𝜕𝑝2
𝑎𝑟 − 𝜕𝑥1

𝑎𝑖) + 2𝑏𝑖𝑥1

[

−2𝜂2 + 4𝜂4(𝑥
2
1 − 3𝑝2

2) − 6𝜂6(𝑥
4
1 − 10𝑥3

12𝑝2
2 + 5𝑝4

2)
]

+ 4𝑏𝑟 𝑝2

[

−𝜂2 + 2𝜂4(3𝑥
2
1 − 𝑝2

2) − 3𝜂6(5𝑥
4
1 − 10𝑥2

1𝑝
2
2 + 𝑝4

2)
]

= 0. (44)

From Eqs. (43) and (44) we obtain

𝜕2
𝑥1
𝑎𝑟 + 𝜕2

𝑝2
𝑎𝑟 − 4(𝜕𝑥1

𝑏𝑟 − 𝜕𝑝2
𝑏𝑖)𝑥1

[

−𝜂2 + 2𝜂4(𝑥
2
1 − 3𝑝2

2) − 3𝜂6(𝑥
4
1 − 10𝑥2

1𝑝
2
2 + 5𝑝4

2)
]

+ 4(𝜕𝑥1
𝑏𝑖 − 𝜕𝑝2

𝑏𝑟 ) × 𝑝2

[

−𝜂2 + 2𝜂4(3𝑥
2
1 − 𝑝2

2) − 3𝜂6(5𝑥
4
1 − 10𝑥2

1𝑝
2
2 + 𝑝4

2)
]

= 0. (45)

Using Eqs. (21) and (22) in Eq. (45) we have

𝑎𝑟 =−4𝛽2𝑥1

[

−𝜂2

(

𝑥2
1

6
+
𝑝2

2

2

)

+ 𝜂4

(

𝑥4
1

5
− 𝑝4

2

)

−
3

2
𝜂6

(

𝑥6
1

7
− 𝑥4

1𝑝
2
2 −

5

3
𝑥2

1𝑝
4
2 + 𝑝6

2

)]

− 4𝛽1𝑝2

[

−𝜂2

(

𝑝2
2

6
+ 𝑥2

1

)

+ 𝜂4

(

𝑥4
1 −

𝑝4
2

5

)

−
3

2
𝜂6

(

𝑥6
1 −

5

3
𝑥4

1𝑝
2
2 +

𝑝6
2

7
− 𝑥2

1𝑝
4
2

)]

, (46)

Similarly, 𝑎𝑖 can be written as

𝑎𝑖 = 4𝛽1𝑥1

[

−𝜂2

(

𝑥2
1

6
+
𝑝2

2

2

)

+ 𝜂4

(

𝑥4
1

5
− 𝑝4

2

)

−
3

2
𝜂6

(

𝑥6
1

7
− 𝑥4

1𝑝
2
2 −

5

3
𝑥2

1𝑝
4
2 + 𝑝6

2

)]

− 4𝛽2𝑝2

[

−𝜂2

(

𝑝2
2

6
+
𝑥2

1

2

)

+ 𝜂4

(

𝑥4
1 −

𝑝4
2

5

)

−
3

2
𝜂6

(

𝑥6
1 −

5

3
𝑥4

1𝑝
2
2 +

𝑝6
2

7
− 𝑥2

1𝑝
4
2

)]

, (47)

Using Eqs. (21) and (22) along with Eqs. (35) and (36) in Eqs. (46) and (47),
𝐼1 and 𝐼2 are written as

𝐼1 = − 4𝛽2𝑥1

[

−𝜂2

(

𝑥2
1

6
+
𝑝2

2

2

)

+ 𝜂4

(

𝑥4
1

5
− 𝑝4

2

)

− 𝜂6

(

𝑥6
1

7
− 𝑥4

1𝑝
2
2 −

5

3
𝑥2

1𝑝
4
2 + 𝑝6

2

)]

− 4𝛽1𝑝2

[

−𝜂2

(

𝑝3
2
2

6
+ 𝑥2

1

)

+ 𝜂4

(

𝑥4
1 −

𝑝4
2

5

)

− 𝜂6

(

2𝑥6
1 −

5

3
𝑥4

1𝑝
2
2 +

𝑝6
2

7
− 𝑥2

1𝑝
4
2

)]

+
(

𝛽1 − 𝛽2𝑥1

) (

𝑝2
1 − 𝑥2

2

)

− 2
(

𝛽1𝑥1 − 𝛽2𝑝2

)

𝑝1𝑥2 (48)
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𝐼2 = 4𝛽1𝑥1

[

−𝜂2

(

𝑥2
1

6
+
𝑝2

2

2

)

+ 𝜂4

(

𝑥4
1

5
− 𝑝4

2

)

−
3

2
𝜂6

(

𝑥6
1

7
− 𝑥4

1𝑝
2
2 −

5

3
𝑥2

1𝑝
4
2 + 𝑝6

2

)]

− 4𝛽2𝑝2

[

−𝜂2

(

𝑝2
2

6
+
𝑥2

1

2

)

+ 𝜂4

(

𝑥4
1 −

𝑝4
2

5

)

−
3

2
𝜂6

(

𝑥6
1 −

5

3
𝑥4

1𝑝
2
2 +

𝑝6
2

7
− 𝑥2

1𝑝
4
2

)]

+
(

𝛽1𝑥1 − 𝛽2𝑝2

) (

𝑝2
1 − 𝑥2

2

)

+ 2
(

𝛽1𝑝2 − 𝛽2𝑥1

)

𝑝1𝑥2. (49)

Using Eqs. (48) and (49) in Eq. (4) we have

𝐼 = Ω

[

−
𝜂6

7
𝑥∗
(

𝑥∗
6
− 7𝑥6

)

−
1

5
𝜂4𝑥

∗
(

𝑥∗
4
− 5𝑥4

)

−
1

3
𝜂2𝑥

∗
(

𝑥∗
2
− 3𝑥2

)

]

, (50)

where 𝑥∗ = 𝑥1 − 𝑖𝑝2 and Ω = −𝛽2 + 𝑖𝛽1 is the arbitrary coefficient which is in
agreement with integrability condition.

3. Invariant for a TD system

Struckmier and Reidel in their seminal work derived exact quadratic invariants
(hereafter called SR invariants) for 𝑛-degrees of freedom TD Hamiltonian systems.
These invariants were found to contain a TD function 𝑓2(𝑡), a solution of a third order
differential equation whose coefficients depend on the explicitly known trajectories
of 𝑁-particle system. The so constructed TD invariants were found vital to assess
the accuracy of numerical simulations of some TD Hamiltonian systems [10, 11].
Therefore, keeping in view the importance of SR invariants for real TD Hamiltonian
systems, here in what follows, we deduce such an invariant for complex Hamiltonian
system within the framework of ECPS approach.

Consider a system of a single particle which is moving in an explicitly TD and
velocity-independent potential and described by a Hamiltonian as

𝐻 =
1

2
𝑝2 +𝑉 (𝑥, 𝑡). (51)

The Hamiltonian 𝐻 (𝑥, 𝑝, 𝑡) of a one-dimensional system in complex space can be
expressed, using Eq. (1), as

𝐻 = 𝐻1

(

𝑥1, 𝑝2, 𝑝1, 𝑥2, 𝑡
)

+ 𝑖𝐻2

(

𝑥1, 𝑝2, 𝑝1, 𝑥2, 𝑡
)

. (52)

Note that (𝑥1, 𝑝1), (𝑥2, 𝑝2) constitute canonical pairs. The Hamiltonian, Eq. (51), in
ECPS can be written as

𝐻 =
1

2

(

𝑝2
1 − 𝑥2

2 + 2𝑖𝑝1𝑥2

)

+
(

𝑉𝑟

(

𝑥1, 𝑝2, 𝑡
)

+ 𝑖𝑉𝑖

(

𝑥1, 𝑝2, 𝑡
) )

, (53)

which, after separating real and imaginary parts, can further be written as

𝐻1 =
1

2

(

𝑝2
1 − 𝑥2

2

)

+𝑉𝑟 , (54)

𝐻2 = 𝑝1𝑥2 +𝑉𝑖, (55)



80 S. B. BHARDWAJ, R. M. SINGH, V. KUMAR, N. KUMAR, F. CHAND and S. GUPTA

where 𝑉𝑟 and 𝑉𝑖 are real and imaginary parts of the potential. The Hamilton’s
equations of motion for complex 𝐻 can now be given as

¤𝑥1 =
1

2

(

𝜕𝐻1

𝜕𝑝1

+
𝜕𝐻2

𝜕𝑥2

)

, ¤𝑝2 =
1

2

(

𝜕𝐻2

𝜕𝑝1

−
𝜕𝐻1

𝜕𝑥2

)

,

¤𝑝1 = −
1

2

(

𝜕𝐻1

𝜕𝑥1

+
𝜕𝐻2

𝜕𝑝2

)

, ¤𝑥2 = −
1

2

(

𝜕𝐻2

𝜕𝑥1

−
𝜕𝐻1

𝜕𝑝2

)

. (56)

Now consider a complex phase space function 𝐼 (𝑥, 𝑝, 𝑡) as

𝐼 = 𝐼1
(

𝑥1, 𝑝2, 𝑝1, 𝑥2, 𝑡
)

+ 𝑖𝐼2
(

𝑥1, 𝑝2, 𝑝1, 𝑥2, 𝑡
)

. (57)

The function 𝐼 is said to be a TD invariant of the system in complex phase space
if it conforms to the invariance condition Eq. (5). Now we examine the existence
of a conserved quantity Eq. (57) for a system described by Eq. (51) with a special
ansatz for 𝐼 being at most quadratic in momenta, i.e.

𝐼 = 𝑓2(𝑡)
(

𝑝2
1 − 𝑥2

2 + 2𝑖𝑝1𝑥2

)

+ 𝑓1
(

𝑥1, 𝑝2, 𝑡
) (

𝑝1 + 𝑖𝑥2

)

+ 𝑓0
(

𝑥1, 𝑝2, 𝑡
)

, (58)

where 𝑓1 = 𝑓1𝑟 + 𝑖 𝑓1𝑖 and 𝑓0 = 𝑓0𝑟 + 𝑖 𝑓0𝑖 that render 𝐼 invariant which is to be
determined as a function of 𝑓2. The above equation is written as

𝐼1 = 𝑓2(𝑝
2
1 − 𝑥2

2) + 𝑓1𝑟 𝑝1 − 𝑓1𝑖𝑥2 + 𝑓0𝑟 , (59)

𝐼2 = 2 𝑓2𝑝1𝑥2 + 𝑓1𝑟𝑥2 + 𝑓1𝑖𝑝1 + 𝑓0𝑖 , (60)

after separating the real and imaginary parts.
Now using Eqs. (54)–(56), (59) and (60) in Eqs. (6) and (7), we obtain the

following expressions

¤𝑓2(𝑝
2
1 − 𝑥2

2) − 𝑓2

(

𝜕𝐻1

𝜕𝑥1

+
𝜕𝐻2

𝜕𝑝2

)

𝑝1 + 𝑓2

(

𝜕𝐻2

𝜕𝑥1

−
𝜕𝐻1

𝜕𝑝2

)

𝑥2 +
𝜕 𝑓1𝑟

𝜕𝑡
𝑝1 +

𝜕 𝑓1𝑟

𝜕𝑥1

(

𝜕𝐻1

𝜕𝑝1

+
𝜕𝐻2

𝜕𝑥2

)

𝑝1

2

−
𝑓1𝑟

2

(

𝜕𝐻1

𝜕𝑥1

+
𝜕𝐻2

𝜕𝑝2

)

+
𝜕 𝑓1𝑖

𝜕𝑡
𝑥2 −

𝜕 𝑓1𝑖

𝜕𝑝2

(

𝜕𝐻2

𝜕𝑝1

−
𝜕𝐻1

𝜕𝑥2

)

𝑥2

2
−

𝑓1𝑖

2

(

𝜕𝐻2

𝜕𝑥1

−
𝜕𝐻1

𝜕𝑝2

)

+
1

2

𝜕 𝑓0𝑟

𝜕𝑥1

(

𝜕𝐻1

𝜕𝑝1

+
𝜕𝐻2

𝜕𝑥2

)

+
1

2

𝜕 𝑓0𝑟

𝜕𝑝2

(

𝜕𝐻2

𝜕𝑝1

−
𝜕𝐻1

𝜕𝑥2

)

+
𝜕 𝑓0𝑟

𝜕𝑡
= 0, (61)

2 ¤𝑓2𝑝1𝑥2 − 𝑓2

(

𝜕𝐻1

𝜕𝑥1

+
𝜕𝐻2

𝜕𝑝2

)

𝑥2 − 𝑓2

(

𝜕𝐻2

𝜕𝑥1

−
𝜕𝐻1

𝜕𝑝2

)

𝑝1 +
𝜕 𝑓1𝑟

𝜕𝑡
𝑥2 +

𝜕 𝑓1𝑟

𝜕𝑥1

(

𝜕𝐻1

𝜕𝑝1

+
𝜕𝐻2

𝜕𝑥2

)

𝑥2

2

−
𝑓1𝑟

2

(

𝜕𝐻2

𝜕𝑥1

−
𝜕𝐻1

𝜕𝑝2

)

+
𝜕 𝑓1𝑖

𝜕𝑡
𝑝1 +

𝜕 𝑓1𝑖

𝜕𝑝2

(

𝜕𝐻2

𝜕𝑝1

−
𝜕𝐻1

𝜕𝑥2

)

𝑝1

2
−

𝑓1𝑖

2

(

𝜕𝐻1

𝜕𝑥1

+
𝜕𝐻2

𝜕𝑝2

)

+
1

2

𝜕 𝑓0𝑖

𝜕𝑥1

(

𝜕𝐻1

𝜕𝑝1

+
𝜕𝐻2

𝜕𝑥2

)

+
1

2

𝜕 𝑓0𝑖

𝜕𝑝2

(

𝜕𝐻2

𝜕𝑝1

−
𝜕𝐻1

𝜕𝑥2

)

+
𝜕 𝑓0𝑖

𝜕𝑡
= 0. (62)

The rationalization of the above pair of equations for a given Hamiltonian with
respect to powers of 𝑝1, 𝑥2 and their various products will yield a set of coupled
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PDEs for arbitrary unknown complex coefficients appearing in the ansatz for invariant
and solutions of which, in turn, will yield the final form of invariant 𝐼. Next, we
employ the above line of action to determine a complex SR invariant for a general
one-dimensional nonlinear complex quartic TD potential.

3.1. Complex SR invariant for a general TD quartic potential

As an example, we now consider a general one-dimensional nonlinear complex
Hamiltonian system defined by

𝐻 =
1

2
𝑝2 + 𝑎1(𝑡)𝑥 + 𝑎2(𝑡)𝑥

2 + 𝑎3(𝑡)𝑥
3 + 𝑎4(𝑡)𝑥

4. (63)

Employing Eq. (1), the real and imaginary parts of the above Hamiltonian are
respectively written as

𝐻1 =
1

2

(

𝑝2
1 − 𝑥2

2

)

+ 𝑎1𝑟𝑥1 − 𝑎1𝑖𝑝2 + 𝑎2𝑟

(

𝑥2
1 − 𝑝2

2

)

− 2𝑎2𝑖𝑥1𝑝2 + 𝑎3𝑟

(

𝑥3
1 − 3𝑥1𝑝

2
2

)

− 𝑎3𝑖

(

3𝑥2
1𝑝2 − 𝑝3

2

)

+ 𝑎4𝑟

(

𝑥4
1 + 𝑝4

2 − 6𝑥2
1𝑝

2
2

)

− 4𝑎4𝑖

(

𝑥3
1𝑝2 − 𝑥1𝑝

3
2

)

, (64)

𝐻2 = 𝑝1𝑥2 + 𝑎1𝑟 𝑝2 + 𝑎1𝑖𝑥1 + 𝑎2𝑖

(

𝑥2
1 − 𝑝2

2

)

+ 2𝑎2𝑟𝑥1𝑝2 + 𝑎3𝑖

(

𝑥3
1 − 3𝑥1𝑝

2
2

)

+ 𝑎3𝑟

(

3𝑥2
1𝑝2 − 𝑝3

2

)

+ 𝑎4𝑖

(

𝑥4
1 + 𝑝4

2 − 6𝑥2
1𝑝

2
2

)

+ 4𝑎4𝑟

(

𝑥3
1𝑝2 − 𝑥1𝑝

3
2

)

. (65)

with 𝑎1 = 𝑎1𝑟 + 𝑖𝑎1𝑖, 𝑎2 = 𝑎2𝑟 + 𝑖𝑎2𝑖. . . etc. In view of Eq. (56), Hamiltonian equations
of motion for the above case are obtained as

¤𝑥1 = 𝑝1, ¤𝑝2 = 𝑥2,

¤𝑝1 =−𝑎1𝑟 − 2𝑎2𝑟𝑥1 + 2𝑎2𝑖𝑝2 − 3𝑎3𝑟𝑥
2
1 + 3𝑎3𝑟 𝑝

2
2 + 6𝑎3𝑖𝑥1𝑝2

− 4𝑎4𝑟𝑥
3
1 + 12𝑎4𝑟𝑥1𝑝

2
2 − 4𝑎4𝑖𝑝

3
2 + 12𝑎4𝑖𝑥

2
1𝑝2,

¤𝑥2 =−𝑎1𝑖 − 2𝑎2𝑟 𝑝2 − 2𝑎2𝑖𝑥1 − 3𝑎3𝑖𝑥
2
1 + 3𝑎3𝑖𝑝

2
2 − 6𝑎3𝑟𝑥1𝑝2

+ 4𝑎4𝑟 𝑝
3
2 − 12𝑎4𝑟𝑥

2
1𝑝2 − 4𝑎4𝑖𝑥

3
1 + 12𝑎4𝑖𝑥1𝑝

2
2. (66)

Now, using Eqs. (64) and (65) in Eqs. (61) and (62) and rationalizing the resultant
expressions with respect to the powers of momentum 𝑝1, 𝑥2 and their combinations,
we get the following set of PDEs as

¤𝑓2 +
𝜕 𝑓1𝑟

𝜕𝑥1

= 0, (67)

¤𝑓2 +
𝜕 𝑓1𝑖

𝜕𝑝2

= 0, (68)

2 ¤𝑓2 +
𝜕 𝑓1𝑟

𝜕𝑥1

+
𝜕 𝑓1𝑖

𝜕𝑝2

= 0, (69)

𝜕 𝑓0𝑟

𝜕𝑥1

+
𝜕 𝑓1𝑟

𝜕𝑡
− 2 𝑓2(𝑎1𝑟 + 2𝑎2𝑟𝑥1 − 2𝑎2𝑖𝑝2 + 3𝑎3𝑟𝑥

2
1 − 3𝑎3𝑟 𝑝

2
2

− 6𝑎3𝑖𝑥1𝑝2 + 4𝑎4𝑟𝑥
3
1 − 12𝑎4𝑟𝑥1𝑝

2
2 + 4𝑎4𝑖𝑝

3
2 − 12𝑎4𝑖𝑥

2
1𝑝2) = 0, (70)
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𝜕 𝑓0𝑟

𝜕𝑝2

−
𝜕 𝑓1𝑖

𝜕𝑡
+ 2 𝑓2(𝑎1𝑖 + 2𝑎2𝑟 𝑝2 + 2𝑎2𝑖𝑥1 + 3𝑎3𝑖𝑥

2
1 − 3𝑎3𝑖𝑝

2
2

+ 6𝑎3𝑟𝑥1𝑝2 − 4𝑎4𝑟 𝑝
3
2 + 12𝑎4𝑟𝑥

2
1𝑝2 + 4𝑎4𝑖𝑥

3
1 − 12𝑎4𝑖𝑥1𝑝

2
2) = 0, (71)

𝜕 𝑓0𝑖

𝜕𝑥1

+
𝜕 𝑓1𝑖

𝜕𝑡
− 2 𝑓2(𝑎1𝑖 + 2𝑎2𝑟 𝑝2 + 2𝑎2𝑖𝑥1 + 3𝑎3𝑖𝑥

2
1 − 3𝑎3𝑖𝑝

2
2

+ 6𝑎3𝑟𝑥1𝑝2 − 4𝑎4𝑟 𝑝
3
2 + 12𝑎4𝑟𝑥

2
1𝑝2 + 4𝑎4𝑖𝑥

3
1 − 12𝑎4𝑖𝑥1𝑝

2
2) = 0, (72)

𝜕 𝑓0𝑖

𝜕𝑝2

+
𝜕 𝑓1𝑟

𝜕𝑡
− 2 𝑓2(𝑎1𝑟 + 2𝑎2𝑟𝑥1 − 2𝑎2𝑖𝑝2 + 3𝑎3𝑟𝑥

2
1 − 3𝑎3𝑟 𝑝

2
2

− 6𝑎3𝑖𝑥1𝑝2 + 4𝑎4𝑟𝑥
3
1 − 12𝑎4𝑟𝑥1𝑝

2
2 + 4𝑎4𝑖𝑝

3
2 − 12𝑎4𝑖𝑥

2
1𝑝2) = 0, (73)

𝜕 𝑓0𝑟

𝜕𝑡
− 𝑓1𝑟 (𝑎1𝑟 + 2𝑎2𝑟𝑥1 − 2𝑎2𝑖𝑝2 + 3𝑎3𝑟𝑥

2
1 − 3𝑎3𝑟 𝑝

2
2 − 6𝑎3𝑖𝑥1𝑝2

+ 4𝑎4𝑟𝑥
3
1 − 12𝑎4𝑟𝑥1𝑝

2
2 + 4𝑎4𝑖𝑝

3
2 − 12𝑎4𝑖𝑥

2
1𝑝2) + 𝑓1𝑖 (𝑎1𝑖 + 2𝑎2𝑟 𝑝2

+ 2𝑎2𝑖𝑥1 + 3𝑎3𝑖𝑥
2
1 − 3𝑎3𝑖𝑝

2
2 + 6𝑎3𝑟𝑥1𝑝2 − 4𝑎4𝑟 𝑝

3
2 + 12𝑎4𝑟𝑥

2
1𝑝2

+ 4𝑎4𝑖𝑥
3
1 − 12𝑎4𝑖𝑥1𝑝

2
2) = 0, (74)

𝜕 𝑓0𝑖

𝜕𝑡
− 𝑓1𝑟 (𝑎1𝑖 + 2𝑎2𝑟 𝑝2 + 2𝑎2𝑖𝑥1 + 3𝑎3𝑖𝑥

2
1 − 3𝑎3𝑖𝑝

2
2 + 6𝑎3𝑟𝑥1𝑝2

− 4𝑎4𝑟 𝑝
3
2 + 12𝑎4𝑟𝑥

2
1𝑝2 + 4𝑎4𝑖𝑥

3
1 − 12𝑎4𝑖𝑥1𝑝

2
2) − 𝑓1𝑖 (𝑎1𝑟 + 2𝑎2𝑟𝑥1

− 2𝑎2𝑖𝑝2 + 3𝑎3𝑟𝑥
2
1 − 3𝑎3𝑟 𝑝

2
2 − 6𝑎3𝑖𝑥1𝑝2 + 4𝑎4𝑟𝑥

3
1 − 12𝑎4𝑟𝑥1𝑝

2
2

+ 4𝑎4𝑖𝑝
3
2 − 12𝑎4𝑖𝑥

2
1𝑝2) = 0. (75)

Next, we solve the above set of PDEs for different coupling functions appearing in
the invariant. The solutions of Eqs. (67) and (68) are easily obtained as

𝑓1𝑟 = − ¤𝑓2𝑥1 + 𝛼1(𝑡), 𝑓1𝑖 = − ¤𝑓2𝑝2 + 𝛼2(𝑡). (76)

Here 𝛼’s are integration constants to be obtained separately. Now, using the
results of 𝑓1𝑟 and 𝑓1𝑖 from Eq. (76) in Eqs. (70)–(71) and Eqs. (72)–(73) separately,
we get

𝑓0𝑟 =
¥𝑓2

2

(

𝑥2
1 − 𝑝2

2

)

+ 2 𝑓2 [𝑎1𝑟𝑥1 − 𝑎1𝑖𝑝2 + 𝑎2𝑟 (𝑥
2
1 − 𝑝2

2) − 2𝑎2𝑖𝑥1𝑝2 + 𝑎3𝑟 (𝑥
3
1 − 3𝑥1𝑝

2
2)

−𝑎3𝑖 (3𝑥
2
1𝑝2 − 𝑝3

2) + 𝑎4𝑟 (𝑥
4
1 + 𝑝4

2 − 6𝑥2
1𝑝

2
2) + 4𝑎4𝑖 (𝑥1𝑝

3
2 − 𝑥3

1𝑝2)]

− ¤𝛼1𝑥1 + ¤𝛼2𝑝2 + 𝛽, (77)

𝑓0𝑖 = ¥𝑓2𝑥1𝑝2 + 2 𝑓2 [𝑎1𝑖𝑥1 + 𝑎1𝑟 𝑝2 + 𝑎2𝑖 (𝑥
2
1 − 𝑝2

2) + 2𝑎2𝑟𝑥1𝑝2 + 𝑎3𝑖 (𝑥
3
1 − 3𝑥1𝑝

2
2)

+𝑎3𝑟 (3𝑥
2
1𝑝2 − 𝑝3

2) + 𝑎4𝑖 (𝑥
4
1 + 𝑝4

2 − 6𝑥2
1𝑝

2
2) − 4𝑎4𝑟 (𝑥1𝑝

3
2 − 𝑥3

1𝑝2)]

− ¤𝛼2𝑥1 − ¤𝛼1𝑝2 + 𝛾. (78)

Here 𝛾 and 𝛽 are again integration constants to be determined separately. Similarly,
using the results of 𝑓1𝑟 and 𝑓1𝑖 from Eq. (76) and partial time derivatives of
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Eqs. (77) and (78) in Eqs. (74) and (75), we get the following set of third-order
differential equations for 𝑓2(𝑡) as

𝑓2

2

(

𝑥2
1 − 𝑝2

2

)

+ ¤𝑓2 [3𝑎1𝑟𝑥1 − 3𝑎1𝑖𝑝2 + 4𝑎2𝑟 (𝑥
2
1 − 𝑝2

2) − 8𝑎2𝑖𝑥1𝑝2 + 5𝑎3𝑟 (𝑥
3
1 − 3𝑥1𝑝

2
2)

− 5𝑎3𝑖 (3𝑥
2
1𝑝2 − 𝑝3

2) + 6𝑎4𝑟 (𝑥
4
1 + 𝑝4

2 − 6𝑥2
1𝑝

2
2) + 24𝑎4𝑖 (𝑥1𝑝

3
2 − 𝑥3

1𝑝2)]

+ 2 𝑓2 [ ¤𝑎1𝑟𝑥1 − ¤𝑎1𝑖𝑝2 + ¤𝑎2𝑟 (𝑥
2
1 − 𝑝2

2) − 2 ¤𝑎2𝑖𝑥1𝑝2 + ¤𝑎3𝑟 (𝑥
3
1 − 3𝑥1𝑝

2
2) − ¤𝑎3𝑖 (3𝑥

2
1𝑝2 − 𝑝3

2)

+ ¤𝑎4𝑟 (𝑥
4
1 + 𝑝4

2 − 6𝑥2
1𝑝

2
2) + 4 ¤𝑎4𝑖 (𝑥1𝑝

3
2 − 𝑥3

1𝑝2)] − 𝛼1(𝑎1𝑟 + 2𝑎2𝑟𝑥1 − 2𝑎2𝑖𝑝2 + 3𝑎3𝑟𝑥
2
1

− 3𝑎3𝑟 𝑝
2
2 − 6𝑎3𝑖𝑥1𝑝2 + 4𝑎4𝑟𝑥

3
1 − 12𝑎4𝑟𝑥1𝑝

2
2 + 4𝑎4𝑖𝑝

3
2 − 12𝑎4𝑖𝑥

2
1𝑝2)

+ 𝛼2(𝑎1𝑖 + 2𝑎2𝑟 𝑝2 + 2𝑎2𝑖𝑥1 + 3𝑎3𝑖𝑥
2
1 − 3𝑎3𝑖𝑝

2
2 + 6𝑎3𝑟𝑥1𝑝2 − 4𝑎4𝑟 𝑝

3
2

+ 12𝑎4𝑟𝑥
2
1𝑝2 + 4𝑎4𝑖𝑥

3
1 − 12𝑎4𝑖𝑥1𝑝

2
2) − ¥𝛼1𝑥1 + ¥𝛼2𝑝2 + ¤𝛽 = 0, (79)

𝑓2𝑥1𝑝2 + ¤𝑓2 [3𝑎1𝑖𝑥1 + 3𝑎1𝑟 𝑝2 + 4𝑎2𝑖 (𝑥
2
1 − 𝑝2

2) + 8𝑎2𝑟𝑥1𝑝2 + 5𝑎3𝑖 (𝑥
3
1 − 3𝑥1𝑝

2
2)

+ 5𝑎3𝑟 (3𝑥
2
1𝑝2 − 𝑝3

2) + 6𝑎4𝑖 (𝑥
4
1 + 𝑝4

2 − 6𝑥2
1𝑝

2
2) − 24𝑎4𝑟 (𝑥1𝑝

3
2 − 𝑥3

1𝑝2)]

+ 2 𝑓2 [ ¤𝑎1𝑖𝑥1 + ¤𝑎1𝑟 𝑝2 + ¤𝑎2𝑖 (𝑥
2
1 − 𝑝2

2) + 2 ¤𝑎2𝑟𝑥1𝑝2 + ¤𝑎3𝑖 (𝑥
3
1 − 3𝑥1𝑝

2
2)

+ ¤𝑎3𝑟 (3𝑥
2
1𝑝2 − 𝑝3

2) + ¤𝑎4𝑖 (𝑥
4
1 + 𝑝4

2 − 6𝑥2
1𝑝

2
2) − 4 ¤𝑎4𝑟 (𝑥1𝑝

3
2 − 𝑥3

1𝑝2)]

− 𝛼2(𝑎1𝑟 + 2𝑎2𝑟𝑥1 − 2𝑎2𝑖𝑝2 + 3𝑎3𝑟𝑥
2
1 − 3𝑎3𝑟 𝑝

2
2 − 6𝑎3𝑖𝑥1𝑝2 + 4𝑎4𝑟𝑥

3
1

− 12𝑎4𝑟𝑥1𝑝
2
2 + 4𝑎4𝑖𝑝

3
2 − 12𝑎4𝑖𝑥

2
1𝑝2) − 𝛼1(𝑎1𝑖 + 2𝑎2𝑟 𝑝2 + 2𝑎2𝑖𝑥1 + 3𝑎3𝑖𝑥

2
1

− 3𝑎3𝑖𝑝
2
2 + 6𝑎3𝑟𝑥1𝑝2 − 4𝑎4𝑟 𝑝

3
2 + 12𝑎4𝑟𝑥

2
1𝑝2 + 4𝑎4𝑖𝑥

3
1 − 12𝑎4𝑖𝑥1𝑝

2
2)

− ¥𝛼2𝑥1 − ¥𝛼1𝑝2 + ¤𝛾 = 0. (80)

Now, inserting the different solution functions from Eqs. (76)–(78) in Eqs. (59) and
(60), the real and imaginary parts of invariant (57) are obtained as

𝐼1 = 𝑓2(𝑝
2
1 − 𝑥2

2) −
¤𝑓2(𝑥1𝑝1 − 𝑝2𝑥2) +

¥𝑓2

2
(𝑥2

1 − 𝑝2
2) + 2 𝑓2 [𝑎1𝑟𝑥1 − 𝑎1𝑖𝑝2 + 𝑎2𝑟 (𝑥

2
1 − 𝑝2

2)

− 2𝑎2𝑖𝑥1𝑝2 + 𝑎3𝑟 (𝑥
3
1 − 3𝑥1𝑝

2
2) − 𝑎3𝑖 (3𝑥

2
1𝑝2 − 𝑝3

2) + 𝑎4𝑟 (𝑥
4
1 + 𝑝4

2 − 6𝑥2
1𝑝

2
2)

+ 4𝑎4𝑖 (𝑥1𝑝
3
2 − 𝑥3

1𝑝2)] − ¤𝛼1𝑥1 + ¤𝛼2𝑝2 + 𝛽, (81)

𝐼2 = 2 𝑓2𝑝1𝑥2 − ¤𝑓2(𝑥1𝑥2 + 𝑝1𝑝2) + ¥𝑓2𝑥1𝑝2 + 2 𝑓2 [𝑎1𝑖𝑥1 + 𝑎1𝑟 𝑝2 + 𝑎2𝑖 (𝑥
2
1 − 𝑝2

2)

+ 2𝑎2𝑟𝑥1𝑝2 + 𝑎3𝑖 (𝑥
3
1 − 3𝑥1𝑝

2
2) + 𝑎3𝑟 (3𝑥

2
1𝑝2 − 𝑝3

2) + 𝑎4𝑖 (𝑥
4
1 + 𝑝4

2 − 6𝑥2
1𝑝

2
2)

− 4𝑎4𝑟 (𝑥1𝑝
3
2 − 𝑥3

1𝑝2)] − ¤𝛼2𝑥1 − ¤𝛼1𝑝2 + 𝛾. (82)

Here one can easily verify that the third-order differential equations (79) and (80)
are merely total time derivatives of Eqs. (81) and (82), respectively, and provide
solution function 𝑓2. Further, using the definition given in Eq. (57), a final form of
the complex SR invariant is given as

𝐼 = 𝑓2(𝑝
2
1 − 𝑥2

2 + 2𝑖𝑝1𝑥2) − ¤𝑓2(𝑥1 + 𝑖𝑝2) (𝑝1 + 𝑖𝑥2) + 2 𝑓2 [(𝑎1𝑟 + 𝑖𝑎1𝑖) (𝑥1 + 𝑖𝑝2)

+ (𝑎2𝑟 + 𝑖𝑎2𝑖) (𝑥1 + 𝑖𝑝2)
2 + (𝑎3𝑟 + 𝑖𝑎3𝑖) (𝑥1 + 𝑖𝑝2)

3 + (𝑎4𝑟 + 𝑖𝑎4𝑖) (𝑥1 + 𝑖𝑝2)
4]

+
¥𝑓2

2

(

𝑥1 + 𝑖𝑝2

)2
+
(

𝛼1 + 𝑖𝛼2

) (

𝑝1 + 𝑖𝑥2

)

− ( ¤𝛼1 + 𝑖 ¤𝛼2) (𝑥1 + 𝑖𝑝2) + (𝛽 + 𝑖𝛾). (83)
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The above equation can further be written in a compact form as

𝐼 = 2 𝑓2𝐻 − ¤𝑓2(𝑥1 + 𝑖𝑝2) (𝑝1 + 𝑖𝑥2) +
¥𝑓2

2

(

𝑥1 + 𝑖𝑝2

)2
+ (𝛼1 + 𝑖𝛼2) (𝑝1 + 𝑖𝑥2)

− ( ¤𝛼1 + 𝑖 ¤𝛼2)
(

𝑥1 + 𝑖𝑝2

)

+ (𝛽 + 𝑖𝛾). (84)

Here, function 𝑓2 is given as a solution of the following third-order equation

¤𝑓2 [3(𝑎1𝑟 + 𝑖𝑎1𝑖) (𝑥1 + 𝑖𝑝2) + 4(𝑎2𝑟 + 𝑖𝑎2𝑖) (𝑥1 + 𝑖𝑝2)
2 + 5(𝑎3𝑟 + 𝑖𝑎3𝑖) (𝑥1 + 𝑖𝑝2)

3

+ 6(𝑎4𝑟 + 𝑖𝑎4𝑖) (𝑥1 + 𝑖𝑝2)
4] + 2 𝑓2 [( ¤𝑎1𝑟 + 𝑖 ¤𝑎1𝑖) (𝑥1 + 𝑖𝑝2) + ( ¤𝑎2𝑟 + 𝑖 ¤𝑎2𝑖) (𝑥1 + 𝑖𝑝2)

2

+ ( ¤𝑎3𝑟 + 𝑖 ¤𝑎3𝑖) (𝑥1 + 𝑖𝑝2)
3 + ( ¤𝑎4𝑟 + 𝑖 ¤𝑎4𝑖) (𝑥1 + 𝑖𝑝2)

4] +
𝑓2

2

(

𝑥1 + 𝑖𝑝2

)2

− (𝛼1 + 𝑖𝛼2) [(𝑎1𝑟 + 𝑖𝑎1𝑖) + 2(𝑎2𝑟 + 𝑖𝑎2𝑖) (𝑥1 + 𝑖𝑝2) + 3(𝑎3𝑟 + 𝑖𝑎3𝑖) (𝑥1 + 𝑖𝑝2)
2

+ 4(𝑎4𝑟 + 𝑖𝑎4𝑖) (𝑥1 + 𝑖𝑝2)
3] − ( ¥𝛼1 + 𝑖 ¥𝛼2) (𝑥1 + 𝑖𝑝2) + ( ¤𝛽 + 𝑖 ¤𝛾) = 0, (85)

which is obtained by adding iota times of Eq. (80) to Eq. (79). It should be noted,
that if the function 𝑓2 is assumed to be constant and different integration constants
are set to zero then 𝐼 ∝ 𝐻 where 𝐻, the total energy, itself is a well known
invariant. Again, it is important to note that the quantity obtained in Eq. (84), for

the real case, turns out to be 𝐼 = 2 𝑓2𝐻 − ¤𝑓2𝑥𝑝 +
¥𝑓2
2
𝑥2 + 𝛼𝑝 − ¤𝛼𝑥 + 𝛽 which in turn

matches the invariant obtained earlier in [10, 11] for 𝛼 = 𝑏𝑥 and 𝛽 = 0.

4. Concluding remarks

Here, complex quadratic invariants have been investigated for both TID and
TD Hamiltonian systems in an extended complex phase space. In case of TID
Hamiltonian systems, complex invariants for quartic, odd power quintic and even
power sextic one-dimensional polynomial potentials are constructed by employing the
widely used rationalization method. We further extended the ECPS for TD systems.
Here the form of TD complex invariant has been taken that of SR invariant which
is being utilized for the accuracy check of numerical simulation of TD Hamiltonian
systems. The rationalization method is again used to isolate complex SR invariant
for a general TD quartic potential. This invariant, just like that of real systems,
is found to be proportional to Hamiltonian of the concerned system and reduces
to its real counterpart [10, 11] under certain restriction on arbitrary parameters.
We hope this particular study of complex SR invariants may have some bearings
on simulating trajectories of a system of particles under the influence of complex
potentials. Through this study we expanded the scope of the rationalization method
in ECPS to find complex SR invariant for TD Hamiltonian systems. We plan to
extend the presented studies in our future research.
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Abstract Theoretical investigation on self-focusing of 

q-Gaussian laser beam propagating through underdense 

plasma has been presented. The optical nonlinearity of 

plasma has been modeled by the relativistic mass nonlin-

earity of plasma electrons in the field of laser beam. Using 

variational theory approach, semi-analytical solutions of the 

wave equations for the fields of main beam and that of ripple 

have been obtained. Emphasis has been put on the evolutions 

of the intensities of main beam and that of ripple.

Keywords q-Gaussian · Laser ripple · Variational 

theory · Clean energy · Self-focusing

Introduction

Since the 1930s, when scientists began to realize that the sun 

and other stars are powered by nuclear fusion, their thoughts 

turned toward recreating this process in the laboratory for 

the viable energy production. Because fusion can use atoms 

present in ordinary water as a fuel, harnessing the process 

could assure future generations of adequate electric power 

[1]. The ultimate stakes are so high, fusion will produce no 

harmful emissions—no sooty pollutants, no nuclear waste 

and no greenhouse gases. All the stars and the sun use their 

strong gravitational pull to compress nuclei to high densities. 

In addition, temperatures in the sun are extremely high, so 

that the positively charged nuclei have enough kinetic energy 

to overcome their mutual electrostatic repulsion and draw 

near enough to fuse. However, such resources are not readily 

available on the earth. The particles that fuse most easily are 

the nuclei of deuterium and tritium. To fuse even deuterium 

and tritium, hydrogen gas has to be heated intensely and 

also has to be confined long enough that the particle density 

multiplied by the confinement time exceeds 10
14 seconds 

per cubic centimeter. Since the 1950s, fusion research has 

focused on two ways of achieving this number: inertial con-

finement and magnetic confinement.

The strategy of inertial confinement fusion (ICF) is to 

shine a symmetrical array of powerful laser beams onto a 

spherical capsule containing a D-T mixture. The laser beams 

vaporize the surface of the pellet that explodes outward. To 

conserve momentum, the inner sphere of fuel simultane-

ously shoots inward just like the recoil of a gun when the 

bullet is fired. Although the fuel is compressed for only a 

brief moment (about  10−10 second), extremely high densities 

of almost 10
25 particles per cubic centimeter can be obtained 

[2, 3].

For the successful realization of ICF, it is highly neces-

sary that the fuel pellet should be heated uniformly. How-

ever, due to the nonuniform irradiance (intensity ripples) 

over the cross sections of the laser beams, the pellet is not 

heated uniformly that derives an instability known as Ray-

leigh–Taylor (RT) instability [4–6]: Whenever a not-very-

dense fluid (like air) pushes on a denser fluid (like water), the 

situation is inherently unstable. If the interface between the 

two fluids is having any imperfection like bumps or divots, 

then these imperfections will immediately grow with time.

This fundamental instability can even be observed in 

everyday kitchen scenarios. It may be difficult to imag-

ine an instability in the kitchen, but consider the follow-

ing question: Why does not the water stay in a glass when 

you invert it? At first glance, the answer may seem obvious: 
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Gravity pulls the water down and causes it to spill onto the 

floor. However, upon closer examination, the answer is not 

as straightforward. Atmospheric pressure adds complexity 

to the question. Every exposed surface in contact with air 

experiences pressure. The weight of the atmosphere exerts 

pressure from all directions, compressing us. Every square 

inch of our skin is subjected to 14.7 pounds of air pressure 

pushing against us. We may not notice it because our bodies 

are accustomed to it, but this force is significant, capable of 

crushing a steel can under suitable conditions. It is also more 

than enough to support a glass filled with water and prevent 

the liquid from pouring out. You can try a simple experiment 

yourself (over a sink, of course). Fill a glass to the brim 

with water. Place a smooth, rigid piece of cardboard over 

the mouth of the glass and invert it. Carefully release the 

cardboard. If done gently enough, you will observe that the 

water remains inside the glass. The cardboard is not hold-

ing the water in place. It is not tightly sealed to the glass; 

even a slight touch will dislodge the cardboard and cause the 

water to escape. Moreover, the water is not defying gravity 

by some miraculous means. It is supported by the air pres-

sure. The upward force of the atmosphere, at 14.7 pounds 

per square inch, is significantly stronger than the downward 

force exerted by the water in the glass, which amounts to 

only a few ounces per square inch. When these two forces 

clash, the upward push of the atmosphere prevails, and the 

water stays put. Surprisingly, the forces are so imbalanced 

that you would need an exceptionally tall glass of water, 

around thirty feet high, for the downward weight of the water 

to equal the upward pressure from the atmosphere. With 

such a substantial discrepancy between forces, the ques-

tion becomes far less trivial: Why does not water remain 

in a glass when it is turned upside down? The water spills 

out due to an effect called the Rayleigh–Taylor instability. 

Whenever a less dense fluid (such as air) pushes against a 

denser fluid (such as water), it creates an intrinsically unsta-

ble situation. If the interface between the two fluids contains 

any imperfections, such as bumps or divots, those imperfec-

tions rapidly grow larger. When you invert a glass of water, 

even if you do so carefully, the liquid’s surface exhibits a 

few crests and troughs. In a fraction of a second, these crests 

expand, transforming into large drooping tendrils of water 

hanging down from the surface, while the troughs deepen 

and allow significant pockets of air to penetrate the glass. 

The tendrils break, the air pockets detach, and the entire 

glass of water spills out onto the floor. This phenomenon 

exemplifies the Rayleigh–Taylor instability in action.

It is almost as if the laser scientists are trying to invert a 

glass so carefully that the surface of the water inside would 

not ripple at all. In ICF as the fuel pellet is compressed, it 

becomes denser and denser. Long before it is hot and dense 

enough to fuse, it will be much denser than whatever mean 

is being used to compress it. A less dense substance, i.e., 

laser beams are being used to squash and contain a much 

denser one, and hence, the situation will get prone to Ray-

leigh–Taylor instabilities. Any tiny imperfections on the 

interface between the plasma and the laser beams pushing 

on the plasma will grow with time. Even an almost perfectly 

spherical pellet of deuterium–tritium will quickly become 

distorted, squirting tendrils in all directions (Fig. 1). Just as 

RT instability ruins any attempt to keep water in an inverted 

glass by means of air pressure, it seriously damages ICF 

machine’s ability to compress and contain fusion plasma by 

means of laser beams. Thus, it becomes essential to investi-

gate the behavior of intensity ripples over the cross section 

of laser beams during their propagation through plasmas.

Intensity ripples in a laser system are due to spontaneous 

emissions [7, 8]. Each spontaneously emitted photon adds 

to the coherent field (established by stimulated emissions) a 

small field component whose phase is random, and thus per-

turbs both amplitude and phase in a random manner. The net 

result is that the intensity profile of the laser beam exhibits 

fluctuations in the form of ripples (Fig. 2).

An extended physical analogy can be helpful in compre-

hending the involved mechanisms. The oscillations of the 

electromagnetic field bear resemblance to the movements of 

a playground swing. Similar to the motion of a light wave, 

the swing’s oscillation exhibits a specific frequency (the 

number of cycles or round trips the swing completes within 

a given time frame) and amplitude (the height reached by the 

swing in each cycle). The relative motion of two children on 

swings, like that of two light waves, is described in terms of 

their relative phase: If both children reach the highest point 

of their swing simultaneously in each cycle, they are swing-

ing in phase. On the other hand, if they reach the peak at dif-

ferent times, they are said to be out of phase to some extent.

Let’s consider a scenario where a child on a playground 

decides to operate a swing in a slightly unconventional 

manner. Instead of following the conventional method of 

leaning back and then forward once in each cycle, the child 

chooses to either stand on the seat or squat down at different 

moments during the swing’s cycle. If the child squats as the 

swing approaches the highest point of its motion and stands 

up when the swing is closest to the ground (thus exerting 

effort against the centrifugal force), they will be injecting 

additional energy into the swing’s motion, thereby amplify-

ing it. Consequently, the swing will reach greater heights in 

every cycle. Conversely, if the child squats when the swing 

is nearest to the ground and stands up as it rises, they will 

diminish the swing’s motion, resulting in reduced height in 

each subsequent cycle.

In our analogy, the pumping motion performed by the 

child exhibits two significant characteristics. Firstly, the 

child stands and squats twice during each round trip of the 

swing. In more technical terms, the frequency of the pump-

ing action is twice the frequency of the swing’s motion. 
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Secondly, the swing’s motion can be either amplified or 

diminished based on the relative phase of the child’s stand-

ing and squatting positions, specifically whether the child 

stands or squats at the highest point of the swing’s cycle.

Similarly, a comparable pumping action can be applied 

to a light wave that is confined within an elongated cavity 

equipped with mirrors at both ends. Assuming the length of 

the cavity precisely matches a whole number of wavelengths 

of the light, the confined wave undergoes interference with 

itself upon reflection from each end of the cavity. Conse-

quently, the wave resonates as a standing wave, akin to how 

a sound wave resonates within an organ pipe.

Fig. 1  Rayleigh–Taylor insta-

bility in ICF

Fig. 2  Intensity ripple on laser 

beam
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Let’s consider a scenario where it becomes feasible to 

oscillate the mirror at one end of the cavity back and forth, 

thus altering the cavity’s length at precisely twice the fre-

quency of the light wave. By consistently modifying the cav-

ity’s length in this manner, energy would be either added to 

or subtracted from the light wave as it reflects off the mirror. 

Similar to the child’s pumping motion, the mirror’s vibration 

would either amplify or diminish the light wave’s intensity, 

depending on the relative phase between the mirror’s vibra-

tion and the oscillation of the light wave. If the mirror’s 

motion aligns with the appropriate phase of the light wave’s 

oscillation, the wave is amplified, resulting in a strengthened 

oscillating electromagnetic field. Conversely, if the mirror’s 

motion aligns with the complementary phase, the wave is 

de-amplified, causing the oscillating electromagnetic field 

to weaken.

Returning to our analogy, envision an entire playground 

filled with children, each on their respective swings. They 

are all swinging at the same frequency but are not synchro-

nized in phase. At any given moment, some children may 

be near the top of their swing cycle while others are closer 

to the ground. Now, suppose a teacher enters the playground 

and uses a megaphone to shout “Stand… squat… stand… 

squat…” at exactly twice the frequency of the children’s 

swinging. When the teacher shouts “Stand,” some children 

will be near or at the bottom of their swing cycle, while oth-

ers will be near or at the top. Those who stand near the bot-

tom during the teacher’s command will amplify the motion 

of their swings, whereas those who stand near the top will 

de-amplify the motion of their swings.

Gradually, the children who stand near the bottom of their 

swing cycle will start swinging with significantly greater 

amplitude than before, while those who stand near the top 

will experience minimal swinging. Consequently, the play-

ground will feature a group of children swinging at much 

higher heights, almost perfectly in phase with one another 

and synchronized with the teacher’s commands. Meanwhile, 

there will be another group of children who essentially cease 

swinging, despite continuing to stand and squat. In our anal-

ogy, these children correspond to spontaneously emitted 

photons those add up to stimulatedly emitted photons in the 

form of intensity ripples.

It is well known fact that laser beams differing in inten-

sity profiles behave differently in plasmas [9–12]. However, 

the literature review reveals the fact that most of the ear-

lier investigations on self-focusing of rippled laser beams 

in plasmas have been carried out for ideal Gaussian laser 

beams [13–18]. In contrast with this picture, the experimen-

tal investigations on the irradiance profile of Vulcan petawatt 

laser at Rutherford Appleton laboratory [19] reveal that the 

actual irradiance over the cross section of the laser beam is 

not ideally Gaussian. A significant amount of laser energy 

was found to be lying outside the half-width full maximum 

of the laser beam. The best irradiance profile that fits into 

the experimental data [20] is Tsallis q-Gaussian distribution 

[21]. To best of author’s knowledge to earlier investigation 

on self-focusing of rippled laser beams in plasmas has been 

reported for q-Gaussian laser beams. Thus, the aim of this 

paper is to give first theoretical investigation on self-focusing 

of rippled q-Gaussian laser beams in plasmas with relativis-

tic optical nonlinearity.

Relativistic nonlinearity of plasma

Consider the propagation of a laser beam with angular fre-

quency �
0
 and wave number k

0
 through a plasma with equi-

librium electron density n
0
 . The dielectric function of such 

a plasma can be written as

where

is the equilibrium plasma frequency, ( m
e
, e ) being the elec-

tronic mass and charge, respectively.

The laser beam is having sharp intensity ripples over its 

cross section. The electric filed vector of such a laser beam 

can be written as

where A
0
 is the amplitude of the field of main beam, and 

A
r
 is that of intensity ripple. Under the intense field of the 

laser beam, the oscillations of the plasma electrons become 

relativistic, and the mass m
e
 of the electron in Eq. (1) needs 

to be replaced by m0� , where m
0
 is the rest mass of electron, 

and � is the relativistic Lorentz factor and is related to laser 

field amplitude as [22]

where � =
e

2

m
2

0
�2

0
c

2
 is the coefficient of relativistic nonlinearity 

and

�
p
 being the phase difference between the fields of main 

beam and intensity ripple.

Thus, in the presence of laser beam, the dielectric func-

tion of plasma gets modified as

� = 1 −

�
2

p

�
2

0

(1)�
2

p
=

4�e
2

m
e
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(2)E = (A
0
+Ar)e
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0
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(3)𝛾 =
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(4)EE⋆ = A
0
A⋆

0
+ ArA

⋆

r
+ 2A

0
Arcos(𝜃p)
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where

is the equilibrium plasma frequency. Thus, the relativistic 

effects make the index of refraction of plasma intensity 

dependent which, in turn, due to the spatial dependence of 

the amplitude structure of the laser beam, resembles to that 

of graded index fiber. Separating the dielectric function of 

plasma into linear (�
0
) and nonlinear (�) parts as

we get

and

Evolution of beam widths of laser beam

The wave equation governing the evolution of amplitude A 

of the main beam is

Being nonlinear in nature, linear combination of two 

solutions is not a solution of this equation. In other words, 

superposition principle does not apply to Eq. (9). Due to 

the non-applicability of superposition principle, Eq. (9) 

does not possess any closed form analytical solution. The 

only way to get physical insight is to use numerical meth-

ods or semi-analytical methods. In the present investiga-

tion, we have used a semi-analytical technique known as 

variational method [23–27] to obtain the solution of Eq. (9). 

This method converts the problem of solving a partial dif-

ferential equation to that of solving a set of coupled ordinary 

differential equations. These ordinary differential equations 

(5)𝜖 = 1 −

𝜔2

p0

𝜔2

0

(

1 + 𝛽A
0
A⋆

0

)−
1

2

�
2

p0
=

4�e
2

m
0

n
0

(6)𝜖 = 𝜖
0
+ 𝜙

(

EE
⋆
)

(7)�
0
= 1 −

�
2

p0

�
2

0

(8)𝜙
(

EE⋆
)

=
𝜔2

p0

𝜔2

0

{

1 −
1

(1 + 𝛽EE⋆)
1

2

}

(9)𝜄
𝜕A

0

𝜕z
=

1

2k
0

∇
2

⟂
A

0
+

k
0

2𝜖
0

𝜙
(

A
0
A
⋆

0

)

A
0

govern the evolution of the various parameters of interest. In 

case of self-focusing of laser beam, the parameter of inter-

est is the beam width of the laser beam. According to this 

method, Eq. (9) is a variational problem for action principle 

based on Lagrangian density

In the present investigation, we have considered the trial 

function of the form

Here E
00

 is the axial amplitude of the field of the laser 

beam, and r
0
 is the initial beam width of the main laser 

beam. The phenomenological parameter q is related to 

the deviation of amplitude structure from ideal Gaussian 

profile and is termed as deviation parameter. The value 

of deviation parameter q varies from laser to laser and 

can be obtained by fitting into the experimental data for a 

given laser system. f  is the currently undetermined, real 

function of longitudinal coordinate z . Upon multiplication 

with r0, it gives the instantaneous spot size of the laser 

beam. Thus, the function f  is termed as dimensionless 

beam width parameter.

Substituting the trial function given by Eq.  (11) in 

Lagrangian density and integrating over the entire cross 

section of the laser beam, we get the reduced Lagrangian 

as L
M
= ∫ L

M
d

2
r . The corresponding Euler–Lagrange 

equation

gives

where
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Equation (13) can be written as

where

Equation (14) is the differential equation governing the 

evolution of beam width of the q-Gaussian laser beam during 

its journey through the plasma. The first terms on the right 

hand side of this equation correspond to the linear propaga-

tion of the laser beam, i.e., its propagation through vacuum 

or through the media whose index of refraction is independ-

ent of the intensity of the laser beam. The second terms 

on the R.H.S of this equation correspond to the nonlinear 

response of the medium.

Evolution of beam width of intensity ripple

Wave equation for the intensity ripple over the cross section 

for the laser beam is given by

The Lagrangian density corresponding to this equation 

can be written as
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In the present investigation, we have assumed Gaussian 

irradiance profile of the intensity ripple riding over the cross 

section of the laser beam. Such an intensity ripple can be 

modeled as

Here r
r
 is the initial width of the ripple, andg is the dimen-

sionless beam width parameter of the ripple. The constant 

n gives the position of intensity ripple from the axis of the 

main beam. As the value of n increases, the intensity ripple 

shifts away from the beam axis.

Using the same procedure as that of Sect. “Relativistic 

nonlinearity of plasma”, we get the following equation for 

the evolution of beam width of the intensity ripple

where
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Fig. 3  Evolution of intensities of laser beam and ripple with distance of propagation for q = (3, 4, 5,∞) , �E
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Equation 18 governs the evolution of beam width of inten-

sity ripple with distance of propagation, during the propagation 

of laser beam through plasma. It can be seen that the behavior 

of beam width of the intensity ripple is highly dependent on 

the propagation characteristics of the main beam. This is due 

to the fact that due to the laser-induced relativistic nonlinear-

ity in the optical properties of plasma, the intensity ripple gets 

coupled to the main beam and is thus, strongly influenced by it. 

But as the overall power of ripple is quite less than that of main 

beam, it cannot affect the propagation of main beam but the 

main beam affects the propagation characteristics of the ripple.

Results and discussion

In the present investigation, Eqs. (14) and (18) have been 

solved numerically for following set of laser plasma 

parameters:

and

Under the boundary condition that at the plane of incidence, 

the laser beam is collimated, i.e., it is having plane wave front. 

Mathematically, this condition can be expressed as

Figure 3 illustrates the effect of deviation parameter q 

of the main laser beam on evolution of normalized intensi-

ties of the main laser beam and that of ripple during the 

propagation of laser beam through the plasma. Here, the 

central lobes represents the intensity of the main beam, and 

the surrounding lobes represent that of ripple riding over 

the cross section of main beam. It can be seen that intensi-

ties of the main beam as well as that of ripple evolve in 

an oscillatory manner during the propagation of the laser 

beam through the plasma. These oscillations in their inten-

sities are due to their periodic focusing/defocusing arising 

as a consequence of saturation nature of relativistic nonlin-

earity. Initially due to laser-induced relativistic nonlinear-

ity, the beam widths of the laser beam and that of ripple 

start decreasing and hence their intensities start increasing 
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that further enhances the relativistic nonlinearity. When 

the intensities of the laser beam and ripple becomes too 

high, the mass of plasma electrons in the illuminated por-

tion of plasma gets saturated. Hence, now the laser beam 

propagates as if it is propagating through vacuum. Hence, 

after attaining minimum possible beam widths, the spot 

size of the main beam and that of ripple bounces back. 

These processes keep on repeating themselves giving an 

oscillatory behavior to the intensities of the laser beam 

and that of ripple.

The plots in Fig. 3 indicate that with increase in the value 

of deviation parameter q of the main laser beam, there is 

decrease in the extent of self-focusing of the main laser 

beam but along with that there is increase in the extent of 

self-focusing of ripple. This is due to the fact that most of 

the energy of laser beams with larger value of q is concen-

trated around a narrow region around the beam axis. Hence, 

off-axial rays of these beams give a little contribution to the 

optical nonlinearity of plasma. As the self-focusing of the 

laser beam is a consequence of the optical nonlinearity of 

plasma, increase in deviation parameter q reduces the extent 

of self-focusing of the main beam. The increase in the extent 

of self-focusing of ripple with increase in the deviation 

parameter q of the main beam is due to the fact that as the 

value of deviation parameter q increases, the intensity of the 

main beam converges toward the beam axis that makes the 

axial part of the ripple stronger. Thus, increase in deviation 

parameter q of the main laser beam leads to the enhancement 

of self-focusing of the ripple.

The plots in Fig. 4 illustrate the effect of intensity of the 

main beam on evolution of the intensities of main beam 

and that of ripple during the propagation of the laser beam 

through plasma. It can be seen that with increase in the 

intensity of main beam, the extent of self-focusing of laser 

beam as well as that of ripple gets increased. This is due to 

the fact that increase in intensity of main beam enhances 

the relativistic nonlinearity of plasma that, in turn, results 

in deeper focusing of laser beam and ripple riding over its 

cross section.

The plots in Fig. 5 depict the effect of plasma density on 

the self-focusing of main beam and intensity ripple. It can 

be seen that the effect of increase in plasma density is to 

increase the extent of self-focusing of laser beam as well as 

of intensity ripple. The underlying physics behind this effect 

is that increase in plasma density means increase in number 

of electrons contributing to the relativistic nonlinearity of 

plasma. Thus, increase in plasma density enhances the self-

focusing of main beam and that of ripple.

Figure 6 illustrates the effect of initial intensity of laser 

ripple on self-focusing of both the ripple and laser beam. It 



J Opt 

1 3

can be seen that with increase in initial intensity of the rip-

ple, the extent of self-focusing of ripple increases, but there 

is no extent on self-focusing of main beam. The underlying 

physics behind this fact is that ripples with higher initial 

intensity produce more relativistic nonlinearity in the opti-

cal properties of plasmas, and thus, they get focused more. 

But, overall being very much weaker than the main beam, 

the propagation characteristics of ripple do not affect that of 

main beam, i.e., main beam can influence the intensity ripple 

due to its nonlinear coupling with the ripple, but being very 

much stronger than ripple main beam is not influenced by 

the ripple. Thus, increase in initial intensity of ripple has no 

effect on the self-focusing of the main beam.

Figure 7 depicts the effect of position of intensity rip-

ple from the beam axis on extent of self-focusing of main 

beam and that of ripple. It can be seen that as the ripple 

shifts away from the beam axis, extent of its self-focusing 

increases; however, there is no effect on self-focusing of 

the main beam. This is due to the fact that as the position 

of peak intensity of ripple shifts away from the beam axis, 

the intensity gradient between the beam axis and position 

of intensity maximum of the ripple increases. This forms 

graded index fiber kind of structure into the plasma for the 

propagation of ripple. Due to the formation of this plasma 

channel, the extent of self-focusing of ripple increases, as 

the ripple shifts away from beam axis.

Fig. 4  Evolution of intensities of laser beam and ripple with distance of propagation for q = 3 , �E
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Conclusions

In conclusion, we have investigated the dynamics of rippled 

q-Gaussian laser beam propagating through under dense 

plasma. Effect of self-focusing of the main beam on the 

growth of intensity ripple riding over the cross section of 

the laser beam has been investigated in detail. It has been 

observed that the growth of intensity ripple is significantly 

affected by the irradiance profile of the laser beam. As the 

irradiance over the cross section of the main beam converges 

toward ideal Gaussian profile, the extent of its self-focusing 

gets reduced but the intensity ripple gets amplified. Hence, 

it can be concluded that ideal Gaussian laser beams are less 

suitable for ICF as they possess lesser focusing behavior 

as well as they amplify any perturbation in their irradiance 

profile. Thus, these beams will enhance the Rayleigh–Taylor 

instabilities during ICF.

Fig. 5  Evolution of intensities of laser beam and ripple with distance of propagation for q = 3 , �E
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Fig. 6  Evolution of intensities of laser beam and ripple with distance of propagation for q = 3 , �E
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Data availability The data that support the findings of this study are 

available within the article. 
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Abstract This paper presents a theoretical investigation 

on stimulated Raman scattering (SRS) of intense Laguerre–

Gaussian (LG) laser beams propagating through plasma with 

axial density ramp. The optical nonlinearity of the plasma 

has been considered to be originating due the ponderomotive 

force acting on the plasma electrons due to intensity gradient 

over the cross section of laser beam. An intense laser beam 

with frequency �
0
 propagating through plasma gets cou-

pled with a preexisting electron plasma wave (EPW) at fre-

quency ω
ep

 and produces a back scattered wave at frequency 

�
s
= �

0
− �

ep
 . Using variational theory semi-analytical 

solution of the set of coupled wave equations for the pump, 

EPW and scattered wave has been obtained under W.K.B 

approximation. It has been observed that power of the scat-

tered wave is significantly affected by the self-focusing effect 

of pump beam.

Keywords Self-focusing · Stimulated Raman scattering · 

Laguerre–Gaussian · Clean energy · Ponderomotive force

Introduction

The invention of the laser led to a renaissance in the field 

of light matter interactions by giving birth to an entirely 

new area of research known as laser plasma interactions. 

Since the past few decades, this new field is at vanguard of 

research due to its importance in many potent applications 

[1–8]. The impetus was built by the proposal of initiating 

thermonuclear fusion [1, 3] for viable energy production by 

using intense laser beams.

Both the allure and the challenges of fusion arise from the 

nature of the fusion process itself. Fusion fuel is abundant 

and cheap. The major advantages are: (1). The abundance 

of fuel—the most easily exploitable fuels are deuterium 

and tritium. Deuterium occurs naturally in all sources of 

water specially sea water. Tritium, however, is not readily 

available naturally, it can easily be manufactured inside the 

fusion reactor by the bombardment of neutrons with lith-

ium, which also abundant in nature. (2). Cleanest source 

of energy—Fusion does not produce nuclear waste directly. 

In laser driven fusion, the goal is to deposit laser energy 

at a particular density in the plasma in order to derive the 

compression and subsequent heating of the fuel pellet. If 

the pellet is compressed sufficiently, it may undergo fusion, 

leaving to the release of a large amount of energy. It’s as if 

there is a tiny hunk of the sun on Earth.

The successful implosion of the fuel pellet depends on 

the efficiency of laser plasma coupling which is decided by 

several nonlinear processes [9–11] ranging from collisional 

absorption to excitation of several laser driven instabilities 

[12–15]. In laser plasma instabilities, the pump beam (inci-

dent laser beam) splits into two daughter waves. If there is no 

external magnetic field, these daughter waves will be a scat-

tered electromagnetic wave along with an electron plasma 

wave (EPW) or ion acoustic waves (IAW).

For laser driven fusion, these instabilities are of serious 

concern because if they are operative to a significant extent, 

they make it difficult to achieve high gain. In this context, 

SRS [16, 17], in which the incident laser beam decays into 

an EPW and a scattered electromagnetic wave, is of more 
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serious concern because it occurs at a density much less than 

the critical density ( ∼
1

4
n

cr
 ). It reflects back a significant 

amount of laser energy that, otherwise, has to be deposited 

to the fusion plasma.

SRS is a two-edged sword. On the one hand, it degrades 

the efficiency of laser plasma coupling, and on the other 

hand, the excited EPW through SRS leads to the generation 

of superthermal electrons in laser-driven fusion. The elec-

trons that happen to be moving in the same direction as the 

excited plasma wave and at roughly the same speed become 

trapped in the plasma wave. The high electric field of the 

EPW accelerates these trapped electrons to superthermal 

velocities. These highly penetrating superthermal electrons 

lead to premature burning of the pellet before the pellet gets 

compressed to critical density. This process is known as 

preheating. The attractive force between the superthermal 

electrons and the ions in the corona can also lead to loss of 

energetic ions from the ablation layer. These outward accel-

erated energetic ions further drain away laser energy being 

deposited to imploding pellet.

When these SRS was predicted and observed experi-

mentally, it appeared that nonlinear optics could be treated 

in a reasonable way. However, it turns out to be much 

more complicated than was thought. One another non-

linear optical effect of self-focusing significantly affects 

SRS [18]. Because of the ponderomotive force effect, the 

refractive index of irradiated portion of plasma is greater 

where light is intense than elsewhere. This results in a 

gradient of index of refraction at the beam edges leading 

to a graded index fiber-like structure which focuses the 

outer portion of the beam inward. The result is that the 

beam gets shrinked to a very narrow diameter, of the order 

of a few microns. This makes the propagation dynamics 

of laser beam rather more complex. Self-focusing of the 

laser beam results in its filamentation in which a large ini-

tial beam breaks up into a number of filaments, and these 

filaments can further contain still finer filaments within 

them. In these filaments, the light intensity is very much 

higher than the average intensity over the cross section 

of the beam. Thus, all sorts of nonlinear optical effects 

such as SRS and SBS take place primarily in these fila-

ments. Thus, in the investigation of SRS of laser beams 

in plasmas, it becomes vital to incorporate the effect of 

self-focusing of the laser beam [19].

Most laser beams have a Gaussian irradiance profile, 

although it can be beneficial to use a non-Gaussian beam 

in certain applications [20, 21]. The irradiance cross sec-

tion of Gaussian beams decreases symmetrically with 

increasing distance from the center. Gaussian laser pro-

files have several disadvantages, such as the low-intensity 

portions on either side of the usable central region of the 

beam, known as “wings.” These wings typically contain 

energy that is wasted because it is at a lower intensity than 

the threshold required for the given application, whether it 

is materials processing, laser surgery, laser-driven fusion 

or another application where an intensity above a given 

value is needed. In contrast with Gaussian laser beams, 

a new class of laser beams those carry angular momen-

tum has gained a significant interest among researchers 

working on laser plasma interactions. With a suitable 

choice of parameters, the wings of these laser beams con-

tain a significant amount of energy in comparison with 

the Gaussian laser beams [22]. Also due to vortex struc-

ture at the beam center, such laser beams can be used to 

trap neutral particles and thus can serve as a promising 

tool as optical spanners or optical tweezers. Mathemati-

cally, these laser beams are modeled by Laguerre–Gauss-

ian functions. The literature review reveals the fact that 

no earlier investigation on stimulated Raman scattering 

(SRS) of Laguerre–Gaussian (LG) laser beams propagat-

ing through plasmas has been reported in the past. The 

aim of this article is to give first theoretical investigation 

on SRS of LG laser beams in plasmas with density ramp 

by incorporating the effect of self-focusing.

Ponderomotive nonlinearity of plasma

Consider the propagation of a linearly polarized 

Laguerre–Gaussian laser beam through a collisionless 

plasma, whose electron density is an increasing function of 

distance of propagation and is modeled by[23, 24]

Here n0

0
 is the electron density at z = 0 , i.e., the density at 

the plane of incidence and the constant d gives the measure 

of rate of increase in electron density with distance. Such 

a density profile is known as density ramp, and hence, the 

parameter d gives the measure of slope of density ramp. The 

electric filed vector of the laser beam is given by

The nonuniform irradiance over the cross section of the 

laser beam makes the dc component of ponderomotive force 

Fp = −
e2

4m�
2

0

∇
(

A
0
A∗

0

)

 operative. This force results in migra-

tion of electrons from high-intensity regions toward low-

intensity regions of the illuminated portion of plasma. The 

resulting electron density of plasma is given by

where T
0
 is the temperature of plasma electrons, and K

0
 is 

the Boltzmann constant. Due to the dependence of dielectric 

properties of plasm � = 1 −
4�e

2
n

m�
2

0

 on electron density, the 

(1)n
0
(z) = n

0

0
(1 + tan (dz))

(2)E(r, t) = A0(r, z)e−�(k0z−�0t)e
x

(3)n(r, z) = n0(z)e
−

e2

8m�
2
0

T0K0

A0A∗
0
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modification of electron density, in turn, alters the dielectric 

function of plasma. The intensity-dependent dielectric func-

tion of plasma is given by

Here �2

p0
=

4�e
2

m
n

0

0
 corresponds to the equilibrium plasma 

frequency, i.e., plasma frequency in the absence of laser 

beam.

Thus, the ponderomotive force on the plasma electrons 

produced by the laser beam, makes the index of refrac-

tion of plasma intensity dependent which, in turn, due to 

spatial dependence of the amplitude structure of the laser 

beam, resembles to that of graded index fiber. Separating 

the dielectric function of plasma into linear �
0
 and nonlinear 

�
(

A
0
A
∗

0

)

 parts aswe get

Self‑focusing of LG laser beam

The model equation governing the evolution of a laser beam 

through a nonlinear medium characterized by dielectric 

function of the form given by Eq. (6) is

In the present investigation, we have used a semi-ana-

lytical technique known as variational method [24, 25] to 

solve Eq. (7). This method allows one to obtain approxi-

mate solution of a nonlinear partial differential equation 

by converting it to a set of coupled differential equations 

for the parameters of interest. According to this method, 

Eq. (7) is a variational problem for action principle based 

on Lagrangian density

(4)� = 1 −
�

2

p0

�
2

0

(1 + tan (dz))e
−

e2

8m�
2

0
T0K0

A
0
A∗

0

� = �
0
+ �

(

A
0
A
∗

0

)

(5)�
0
= 1 −

�
2

p0

�
2

0

(6)�
(

A
0
A∗

0

)

=
�2

p0

�2

0

{

1 − [1 + tan (dz)]e
−

e2

8m�2

0
T0K0

A
0
A∗

0

}

(7)

2�k
0

�A
0

�z
=∇2

⊥
A

0
+

�
2

p0

c2

{

1 − (1 + tan (dz))e
−

e2

8m�
2

0
T0K0

A
0
A∗

0

}

A
0

In the present investigation, we have considered the trial 

function of the form [26] 

where r
0
 is the spot size of the laser beam at the plane of 

incidence, i.e., at z = 0 , and the parameter f  that depends on 

the longitudinal distance z is known as dimensionless beam 

width parameter that upon multiplication with r
0
 gives the 

instantaneous spot size of the laser beam in plasma. The 

integers p and l describe the mode structure of the beam, 

where l denotes the number 2� phase cycles around the cir-

cumference, and (p + 1) denotes the number of radial nodes 

in the mode profile. For l ≠ 0 , LGl
p
 beam carries an orbital 

angular momentum lℏ per photon.

Light carrying orbital angular momentum looks very dif-

ferent from that emitted by common laser systems. When it 

hits a surface, it produces a ring-shaped irradiance pattern 

instead of disk-shaped pattern. The ring-shaped intensity is 

the result of the beam’s particular phase profile. All around 

the ring of light, the light waves are arriving at slightly dif-

ferent times relative to each other. The phase fronts cannot 

be twisted at any arbitrary angle of steepness, because at any 

point of a light wave, its phase must be uniquely defined; 

mathematically speaking, the phase at any given angle must 

be the same as that after a full rotation by 360°. This means 

that after one wavelength, the phase front can wind around 

the center of the beam once clockwise, or once counterclock-

wise, or twice in either direction and so forth. The associated 

orbital angular momentum per photon turns out to be based 

on the number of twists of the phase fronts per wavelength 

of the light.

Because of their ring-like appearance, Laguerre–Gauss 

modes are sometimes also called “donut” modes. At the 

center of these light beams, the phase is not defined, and the 

beam contains a singularity or vortex around which the heli-

cal phase fronts swirl with ever-increasing velocity toward 

the core region. Physics does not allow undefined phases or 

infinite velocities, so the intensity of any physical light beam 

with orbital angular momentum vanishes at the center. At 

the dark core, all waves with different phases overlap and 

cancel each other out.

Substituting the trial function given by Eq. (9) in Lagran-

gian density and integrating over the entire cross section of 

the laser beam, we get the reduced Lagrangian as follows:

(8)
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The corresponding Euler–Lagrange equation

gives the differential equation for the evolution of beam 

width of the laser beam as follows:

where

Using Eqs. (6) and (9) in (11), we get

where

Equation (12) can be written as

where
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d2f

d�2
+

�V(f )

�f
= 0

Hence, Eq.  (13) is clear that variational theory has 

reduced the problem of solving a nonlinear partial differ-

ential equation to that of a simple dynamical problem of a 

driven oscillator with unit mass. Here, the role of displace-

ment of the oscillator tis played by the beam width param-

eter f  and that of time is played by longitudinal distance � . 

Thus, it can be predicted that during the propagation of laser 

beam through the plasma, its beam width will evolve in an 

oscillatory manner over the distance of propagation.

Excitation of electron plasma wave

Due to their remarkable properties of quasi-neutrality and 

collective behavior, plasmas can support a number of wave 

modes. The negatively charged electrons are attracted by 

positively charged nuclei, but they are not bound together. 

This gives plasma some unusual properties—the freely float-

ing electrons and ions are strongly affected by electric and 

magnetic fields. Plasma as a whole is quasi-neutral, but as 

the electrons and positively charged ions are separated, a 

disturbance can create regions of net negative and net posi-

tive charges. Such an uneven distribution of charges results 

in an electric field directed from positive to negative regions. 

This electric field pulls the electrons and ions toward each 

other with equal forces. But being very heavy the ions essen-

tially remain at rest and the electrons move toward the ions. 

As the electrons move toward the ions, they steadily gain 

velocity and momentum. Due to this gain in momentum, the 

electrons overshoot their equilibrium positions and thereby 

reversing the direction of electric field. Now, the reversed 

electric field opposes the electron motion, slow them down 

and then pulling them back again. The process repeats itself, 

establishing an electron oscillator. In the presence of ther-

mal velocity, these electron oscillators result in a longitudi-

nal wave of electron density compressions and rarefactions 

propagating through the plasma. The propagation of excited 

EPW is governed by the wave equation[11]:
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where v
th
=

√

2KT
0

m
 is the thermal velocity of plasma elec-

trons. This equation can be obtained by linearizing equation 

of continuity, Poisson’s equation and equation of motion of 

electron fluid. Considering the Gaussian ansatz for the EPW 

as

and using the procedure of Sect. 3, we get the equations for 

the evolution of beam widths of the EPW as follows:

where

Equation (16) shows the coupling of EPW with pump 

beam, i.e., LG laser beam. It can be seen that the density per-

turbation associated with EPW is very sensitive to the self-

focusing of the laser beam. Using Poisson’s equation, the 

electric field of the excited EPW can be obtained as follows:

Evolution of scattered beam

To understand the physics of stimulated Raman scatter-

ing in plasmas consider the propagation of an intense laser 

beam with amplitude E
0
 through a plasma, whose density 

is rippled along the direction of wave vector k
0
 of the inci-

dent laser beams. These density ripples of the plasma are 

due to the propagation of an electron plasma wave through 

the plasma. In the presence of the laser beam, the plasma 

electrons start oscillating under the effect of the field of the 

laser beam and thus generate a transverse electric current 

J
NL

 . Under proper matching of the wave vectors and fre-

quencies, the transverse current generates a scattered wave 

with amplitude E
S
 . The scattered wave then beats with the 

incident laser beam and thus produces variations in wave 

pressure. These variations in wave pressure lead to migration 
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of plasma electrons from the regions of high pressure to the 

regions of low pressure. The resulting density perturbation 

reinforces the initial density fluctuations associated with 

electron plasma wave, i.e., the plasma wave gets amplified. 

The presence of this feedback loop leads to the Raman insta-

bility or stimulated Raman scattering[26, 27].

Under the proper phase matching conditions

The nonlinear coupling of pump beam with EPW 

generates a nonlinear current density J
NL

 at frequency 

�
s
= �

0
− �

ep
 given by[17]

This nonlinear current density leads to a scattered wave 

whose evolution is governed by wave equation

This equation gives the magnitude of electric field of scat-

tered radiation as follows:

Defining the normalized power P
S
 of scattered beam as

we get

Equation (22) gives the power of scattered beam.

Results and discussion

In the present investigation, Eqs. (12), (16) and (20) have 

been solved numerically for the following set of laser and 

plasma parameters.
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. a n d  f o r  d i f f e r e n t  v a l u e s  o f  p, l, d′  , 

i.e.,p = (0, 1, 2), l = (0, 1, 2) and d� = (0.025, 0.035, 0.045)

In order to see the effect of orbital angular momentum 

of the photons on propagation dynamics of the laser beam, 

Eq. (14) has been solved for different values of l keeping 

other parametes fixed. The resulting behavior of the beam 

width is depicted in Fig. 1. It can be seen that the spot size 

of the laser beam evolves in an oscillatory fashion during 

its propagation through the plasma. These oscillations of 

the spot size are a signature of the saturation nature of pon-

deromotive nonlinearity. Due to the intensity gradient over 

the cross section of the laser beam, the plasma electrons 

experience ponderomotive force that expels them from the 

regions of high intensity toward the low-intensity regions. 

As the plasma index of refraction is higher for lower electron 

density and vice versa, the central part of the laser beam 

moves with lesser velocity through the plasma compared 

to its wings. The result is focusing of the laser beam as 

if it is passing through a convex lens. As the laser beam 

becomes more and more focused, more and more elec-

trons are expelled from the irradiated region of plasma and 

ultimately the irradiated region of plasma gets completely 

evacuated from the electrons and thus the plasma index of 

refraction gets saturated. Now, the laser beam propagates as 

if it is propagating through vacuum and thus its beam width 

bounces back toward its original value. Periodic interplay 

between these phenomena results in oscillatory behavior of 

the beam width of the laser beam.

Further, it has been observed that after every focal spot, 

the maximum as well as the minimum of the beam width 

shift downwards. This is owing to the fact that the equilib-

rium electron density is an increasing function of longitu-

dinal distance. Hence, the plasma index of refraction keeps 

on decreasing with the penetration of laser beam into the 

plasma. Consequently, the self-focusing effect gets enhanced 

and the maximum as well as minimum of the beam width go 

on shifting downwards after every focal spot. It is also seen 

that the frequency of oscillations of beam width increases 

with distance. The physics behind this fact is that denser is 

the plasma, higher will be the phase velocity of laser beam 

through it. Hence, in denser plasma, laser beam takes less 

duration to get self-focused.

It can also be seen that with increase in orbital angular 

momentum l , there is decrease in extent of self-focusing of 

the laser beam. This is due to the fact that the photons of 

laser beam carrying orbital angular momentum experience 

a centrifugal force due to which the intensity maximum of 

the irradiance profile gets shifted away from the beam axis. 

Thus, the laser beams with higher value of l get little con-

tribution form the axial part of the beam toward nonlinear 

refraction. As self-focusing of the laser beam is a homeosta-

sis of nonlinear refraction, increase in the value of l results 

in reduced focusing of the laser beam.

Now, in order to see the effect of radial index p on the 

evolution of the beam width of the laser beam, Eq. (14) has 

been solved for different values of p while keeping other 

laser plasma parameters fixed. The resulting behavior of the 

beam width parameter is shown in Fig. 2. It can be seen 

that with increase in the value of p , there is increase in the 

extent of self-focusing of the laser beam. This is due to the 

fact that with increase in value of p , the number of bright 

rings in the off-axial part of the laser beam increases. Thus, 

the laser beam with higher value of p gets additional contri-

bution from the off-axial parts toward nonlinear refraction. 

Thus, increase in the value of p results in enhancement of 

self-focusing of the laser beam.

Fig. 1  Effect of orbital angular momentum l on extent of self-focus-

ing of the laser beam

Fig. 2  Effect of radial mode index p on extent of self-focusing of the 

laser beam
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Figure 3 illustrates the effect of slope of the density ramp 

on self-focusing of the laser beam. It can be seen that with 

increase in the slope of density ramp, there is enhancement 

in the extent of self-focusing of the laser beam. This occurs 

because with increase in the slope of the density ramp, in 

the deeper regions of the plasma, the laser beam sees lesser 

index of refraction. Thus, increase in the slope of density 

ramp enhances the extent of focusing of the laser beam.

Figure 4 illustrates the effect of orbital angular momen-

tum l of the laser beam on strength of excited EPW. It can 

be seen that the strength of the electric field of the excited 

EPW varies in an oscillatory manner with distance of propa-

gation with maximum field occurring at the locations of the 

focal spots of the laser beam. This is due to the fact that 

the amplitude of the EPW is very sensitive to the extent of 

self-focusing of the laser beam. As the pump beam gets self-

focused, its intensity increases and consequently the oscilla-

tion amplitude of the plasma electrons also increases. This, 

in turn, increases the amplitude of EPW. As the beam width 

of the pump beam evolves in an oscillatory manner, the 

strength of the excited EPW also shows the similar behavior 

with maximum field occurring at the location of minimum 

beam width of the pump.

It can also be seen that with increase in orbital angular 

momentum of the laser beam, the strength of excited EPW 

gets reduced. This is due to reduced self-focusing of the laser 

beam with increase in its orbital angular momentum.

Figures 5 and 6 illustrate the effect of radial mode index 

of laser beam and slope of density ramp on strength of 

excited EPW. It can be seen that with increase in either of 

radial mode index p of the laser beam or of slope d
′

 of the 

density ramp, there is increase in strength of excited EPW. 

This is again due to enhanced self-focusing of the laser 

beam with increase in either of radial mode index of the 

laser beam or of slope of the density ramp.

Fig. 3  Effect of slope d
′

 of density ramp on extent of self-focusing of 

the laser beam

Fig. 4  Effect of orbital angular momentum l on strength of EPW

Fig.5  Effect of radial mode index p on strength of EPW

Fig. 6  Effect of slope d′ of density ramp on strength of EPW
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Figures 7, 8 and 9 illustrate the effect of orbital angu-

lar momentum l , radial mode index p of the laser beam 

and slope d′ of density ramp on power of scattered beam, 

respectively. It has been observed that the SRS reflectivity 

of plasma is a monotonically increasing function of propaga-

tion distance, showing step-like behavior. Each step occurs 

at the position of the minimum beam width. This is because 

as the pump beam gets self-focused, its intensity increases 

and consequently the oscillation amplitude of the plasma 

electrons also increases which, in turn, increases the ampli-

tude of the generated EPW. As the density modulation of 

electrons due to EPW is the case of SRS, the resulting in a 

reflected electromagnetic beam. Increase in the amplitude of 

EPW means the increase in the reflectivity of these partially 

induced mirrors. Thus, the amplitude of the scattered wave 

keeps on increasing with the longitudinal distance making 

SRS reflectivity a monotonically increasing function of dis-

tance of propagation.

The step-like behavior of SRS reflectivity at the positions 

of the minimum beam width of the pump beam is owing to 

the fact that these are the regions of highest intensity, and 

hence, the current density for scattered radiation is maxi-

mum there or we can say that the reflectivity of the partially 

reflecting mirrors corresponding to the EPW is maximum 

at the focal spots of the laser beam. Hence, after attaining 

its local maximum value at the first focal spot, the scattered 

radiation again gets a sudden amplification at next focal 

spot. These sudden amplifications of the scattered radiation 

at focal spots of the pump beam give SRS reflectivity a step-

like behavior.

It can also be seen that with increase in orbital angular 

momentum of the laser beam, the power of scattered beam 

gets reduced; however, with increase in radial mode index 

of the laser beam or slope of density ramp, the power of 

scattered beam increases. This is due to the fact that increase 

in orbital angular momentum of the laser beam makes the 

excited EPW weaker; however, increase in radial mode index 

of the laser beam or slope of density ramp makes the EPW 

stronger. The another reason for the decrease in the power of 

scattered radiation with increase in orbital angular momen-

tum of the incident beam is that the orbital angular momen-

tum of the incident beam reduces the coupling between the 

pump and scattered beam.

The plots in Fig. 9 indicate that with increase in slope 

of density ramp, there is increase in the power of scattered 

wave. This is due to increase in the extent of self-focusing 

of the pump beam with increase in slope of density ramp.

Fig.7  Effect of orbital angular momentum l on power of scattered 

beam

Fig. 8  Effect of radial mode index p on power of scattered beam

Fig. 9  Effect of slope d′ of density ramp on power of scattered beam
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Conclusions

In conclusion, we have investigated effect of self-focusing 

of Laguerre–Gaussian laser beams on SRS in collisionless 

plasmas. Following conclusions can be drawn from the 

results of present investigation:

1. There is one to one correspondence between the extent 

of self-focusing of the laser beam and SRS reflectivity 

of plasma.

2. The orbital angular momentum of the laser beam 

reduces the extent of its self-focusing that, in turn, 

reduces the SRS reflectivity of plasma. Thus laser beams 

with orbital angular momentum are more suitable for the 

applications where self-focusing and SRS are serious 

problems.

3. With increase in radial mode index , p the extent of self-

focusing as well as SRS reflectivity increases. Thus, it 

can be concluded that for applications like Raman lasers, 

where SRS amplification is required, laser beams with 

zero angular momentum but higher mode index should 

be preferred.

The results of the present investigation may serve as a 

guide for the experimentalists working in laser plasma 

interactions.
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Abstract This paper presents theoretical investigation on 

the formation of elliptical q-Gaussian breather solitons in 

diffraction managed optical media. The optical nonlinearity 

of the medium has been modeled by cubic–quintic nonlin-

earity. To obtain the physical insight into the propagation 

dynamics of the laser beam, semi-analytical solution of 

the wave equation for the laser beam has been obtained by 

using variational theory approach in W.K.B approximation. 

Emphasis is put on investigating evolutions of transverse 

dimensions and axial phase of the optical beam.

Keywords Soliton · Clean Energy · Self Focusing · 

Variational Theory · Breather

Introduction

Since the debut of quantum mechanics in the 1920s, the 

two different aspects of physical quantities, i.e., waves and 

particles, have been intimately related in physical theories. 

Although both the aspects appear to be physically differ-

ent, there are a number of experimental evidences that show 

correlation among both. In the past few years, solutions of 

certain wave equations have revealed another correlation 

between waves and particles. The surprising fact is that these 

wave equations are not the part of quantum mechanics but 

instead have been derived from classical physics [1]. Solu-

tions to these equations describe waves those neither spread 

in space (i.e., those do not diffract) nor disperse in time. 

Diffraction and dispersion (Fig. 1) are the inherent proper-

ties of all kind of waves whether it is electromagnetic wave, 

mechanical wave (sound wave) or even matter wave.

However, these new kinds of waves retain their size and 

shape indefinitely (Fig. 2). These waves can be regarded as a 

quantity of energy localized permanently to a definite region 

of space. It can be set in motion but it cannot dissipate by 

spreading out. When two such waves collide, each comes 

away from the encounter with its identity intact (Fig. 3). If 

a wave meets an “anti-wave,” both can be annihilated. This 

kind of behavior is extraordinary in waves, but it is familiar 

in another context, i.e., with particles. Thus, such waves can 

be considered as particles and are termed as “solitons.”

The first recorded observation of a soliton was made 

almost 200 years ago by Russell [2], an engineer and naval 

architect. He reported to the British Association for the 

Advancement of Science: “I was observing the motion of a 

boat which was rapidly drawn along a narrow channel by a 

pair of horses. When the boat suddenly stopped-not so the 

mass of water in the channel which it had put in motion; it 

accumulated round the prow of the vessel in a state of vio-

lent agitation then suddenly leaving it behind rolled forward 

with great velocity assuming the form of a large solitary 

elevation a rounded smooth and well-defined heap of water 

which continued its course along the channel apparently 

without change of form or diminution of speed. I followed 

it on horseback and overtook it still rolling on at a rate of 

some eight or nine miles per hour preserving its original 

figure some 30 feet long and a foot to a foot and a half in 

height. Its height gradually diminished and after a chase of 

one or two miles I lost it in the windings of the channel.”

Our topic of investigation, i.e., spatial optical solitons, 

arises due to dynamical balance of diffraction with induced 

focusing of the optical beam in a nonlinear medium. By 

nonlinear medium, it is meant by a medium whose index 
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of refraction is a function of beam intensity. When a nar-

row optical beam (i.e., a beam with finite transverse extent) 

propagates through vacuum or through a medium without 

affecting the optical properties of the medium, it undergoes 

diffraction and thus broadens with distance. Such a broaden-

ing of an optical beam is an inherent property of light that 

originates at a fundamental level form position momentum 

uncertainty of photons.

The narrower will be the initial beam, faster it will 

diverge. However, in nonlinear materials, the electrons of 

the medium respond to the field of the optical beam in such a 

way that its index of refraction does not remain constant but 

becomes a function of intensity of the beam. The change in 

index of refraction follows the intensity profile of the optical 

beam. As a function beam intensity, the index of refraction 

becomes maximum where the beam is most intense. Thus, 

the optical beams with bell-shaped irradiance see maxi-

mum opposition from the medium for their propagation and 

minimum opposition for their wings, thereby inducing a con-

vex lens-like structure into the medium. This induced lens 

focuses the beam, a phenomenon called self-focusing that is 

a precursor of spatial solitons. When self-focusing exactly 

balances beam divergence, the beam become self-trapped at 

a very narrow width and is called an optical spatial soliton. 

This effect was discovered in 1964 by Chiao et al. [3].

To understand intuitively soliton formation in nonlinear 

optical media, consider a group of cyclists traveling into 

the wind and drafting off one another (that is, riding close 

together to cut wind resistance for those behind the leader) 

as depicted in Fig. 4. In the absence of wind, the cyclists 

would spread apart because of their different cycling 

speeds. However, the wind resistance impedes the stronger 

cyclists, who break the headwind for the weaker cyclists. 

Consequently, they all travel together as a packet. The dif-

ferent cycling speeds are like the diffraction effect of opti-

cal beam, and the wind resistance is like the nonlinearity.

Most of the earlier investigations on breather solitons 

in nonlinear media have taken into consideration the effect 

only of Kerr nonlinearity [4–8]. However, at higher inten-

sities of the optical beams higher-order nonlinearities also 

come into picture those sometimes oppose the effect of 

Kerr nonlinearity. In other words, in nonlinear media at 

high input intensities there originate higher-order nonlin-

earities those favor the diffraction effect of light. Such an 

optical nonlinearity can be modeled as [9, 10]

where A
0
 is the amplitude of laser beam, n

0
 is the linear 

refractive index of the medium, while n
2
 and n

4
 are, respec-

tively, the third- and fifth-order nonlinear coefficients; n
2
 is 

also known as Kerr coefficient. Nonlinear coefficients n
2
 and 

n
4
 are, respectively, related to third-order susceptibility � (3) 

and fifth-order susceptibility � (5) through n
2
=

3� (3)

8n
0

 and 

n
4
=

5� (5)

16n0

 . Due to its negative sign, the quintic nonlinearity 

opposes the Kerr nonlinearity of the medium and thus pre-

vents the beam collapse.
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Fig. 1  Behavior of normal wave

Fig. 2  Propagation of solitons

Fig. 3  Particle type behavior of solitons

Fig. 4  Analogy of soliton formation with drafting cyclists
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Optical beams differing in intensity profile behave 

differently in nonlinear media [11–14]. From literature 

review, it has been seen that most of the investigations on 

breather solitons in nonlinear media were focused on prop-

agation characteristics of Gaussian optical beams [15–19]. 

However, experimental investigations reveal that due to 

cavity imperfections like misalignment of end mirrors, the 

presence of impurities in the gain medium, etc., the irradi-

ance over the cross section the beam is not having ideal 

Gaussian profile [20]. Due to these cavity imperfections, 

the wings of the intensity profile are slightly expanded 

as compared to ideal Gaussian profile. The actual profile 

for the irradiance over the cross section of the laser beam 

can be characterized by a class of distribution functions 

known as q-Gaussian distribution [21]. This paper aims to 

present for the first time, a theoretical investigation on the 

effect of self-focusing of elliptical q-Gaussian laser beams 

on the formation of breather solitons in nonlinear media 

possessing cubic–quintic optical nonlinearity.

Formation of breather soliton

The propagation of an optical beam in a nonlinear medium 

with periodically varying diffraction is governed by the wave 

equation [22]

where the constants d
0
 and d

1
 are associated with the ampli-

tude of the periodic modulation of the diffraction phenom-

enon, Ω is the spatial frequency of the diffraction modula-

tion, and

is the nonlinear dielectric function of the medium.

Before attempting to solve Eq.  (2), it is important to 

understand the physical mechanism and the role being 

played by the various terms contained in it. The first term 

on the right hand side (R.H.S) models the diffraction broad-

ening of the laser beam, and the second term arises due to 

the nonlinear response of the medium to the pump beam. 

Depending on its sign, this term increases or decreases 

the diffraction broadening of the laser beam. Therefore, 

this term is called nonlinear refractive term. By compar-

ing Eq. (2) with standard Schrodinger equation of quantum 

mechanics, one can easily recognize that the first term is 

analogous to the kinetic energy of a particle of unit mass 

and the second term is analogous to potential energy of the 

particle in given force filed. Like Schrodinger equation is a 

statement of conservation of energy as it describes the inter 

(2)

2ι
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conversion of kinetic energy to potential energy and vice 

versa. Similarly, Eq. (2) is a mathematical rule describing 

the interplay of diffraction and nonlinear refraction.

For the index of refraction modeled by Eq. (3), the wave 

equation governing the beam propagation, i.e., Eq.  (2), 

becomes nonlinear in nature. Thus, the superposition prin-

ciple will not hold for this equation and hence its closed-

form solution cannot be obtained by conventional methods 

of solving partial differential equations (PDEs). In order 

to obtain physical insight into the dynamics of the optical 

beam, we have used a semi-analytical technique known as 

variational theory [23, 24]. Although numerical methods, 

e.g., the split-step-Fourier method and FDTD method, 

have been developed for solving NLSE, variational method 

has its own advantage as it explicitly confers the evolution 

equations of the beam parameters, which can be further 

investigated to get the insight about the beam propagation. 

Variational method that uses Rayleigh–Ritz optimization is 

also better choice for solving NLSE whose exact solution is 

either unavailable or may be too complicated to provide the 

proper physical insight. However, it fails if the beam or pulse 

transforms its profile or shape. This is the main drawback 

of this otherwise strong analytical tool. In our case, i.e., in 

cubic–quintic medium, elliptical q-Gaussian beam profile 

has been taken as it shows self-similar structure in cubic 

medium. The success of this approximate analytical method 

crucially depends on the choice of the trial function. When 

this choice of the trial function is appropriate, the method 

predicts results with very good accuracy. The heart of this 

method lies in the choice of this trail function, which is ellip-

tical q-Gaussian in our case and is given by [21, 25]

where E
00

 is the axial amplitude of the laser beam, and afx 

and bfy are the beam widths of the laser beam along x axis 

and y axis, respectively. Here, a and b are the respective 

equilibrium beam widths of the laser beam, i.e., the beam 

widths at the plane of entrance (z = 0) . Hence, the param-

eters fx and fy  are known as dimensionless beam width 

parameters. The phenomenological parameter q is the key 

parameter that describes the deviation of the amplitude 

structure of the laser beam from ideal Gaussian profile. As 

the value of q increases the amplitude structure converges 

toward the ideal Gaussian profile. For q = 0 , the beam pro-

file is pure flat-top profile with an infinite plane wavefront 

and for  q → ∞ , i.e.,
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E00
√
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the beam profile is that of a TEM
00

 Gaussian beam. For  

q > 0 as the value of q increases, the effect on the beam 

waist profile is to increase the rate of change of intensity in 

the offaxial regions of the cross section of the laser beam.

There are many reasons for choosing this beam profile. 

Firstly, since our objective is to study the breathing dynam-

ics of elliptical q Gaussian beams, the same must be taken 

as a trial function. Moreover, marked difference in beam 

propagation is observed with this type of beam profile. Sec-

ondly and more importantly, both the deviation parameter 

q and the beam ellipticity provide a control on diffraction, 

self-focusing and self-phase modulation of the beam. Thus, 

by varying the beam geometry the propagation dynamics 

of the laser beam can be controlled. Besides fundamental 

research interest, this beam has potential importance in real-

izing tunable all-optical devices.

The essential stage of variational method is to find the 

Lagrangian density and hence reduced Lagrangian for the 

system. For our model, the Lagrangian density L is given by

Using Eqs. (3) and (4) in Eq. (5) and then integrating 

over the cross section of the laser beam, we get reduced 

Lagrangian as

Now using corresponding Lagrangian equations of 

motion

, we get the equation of motion of beam widths of the laser 

beam.
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where

Equations (7) and (8) govern the evolution of beam 

widths of the laser beam along the transverse directions 

with distance of propagation. The first terms on the right 

hand sides of Eqs. (7) and (8) govern the evolution of 

beam widths of the laser beam in vacuum or linear media; 

however, the second terms on the right hand sides of these 

equations originate as a result of nonlinear response of the 

medium. Thus, it can be seen that the although in linearly 

media the beam widths of the laser beam along the two 

transverse directions evolve independently; however, due 

the laser-induced optical nonlinearity they get coupled 

to each other. The set of Eqs. (7) and (8) also indicates 

that variational theory has reduced the original problem 

of solving a nonlinear partial differential equation to a set 

of coupled ordinary differential equations. Although this 

reduced set of coupled differential equations is also lack-

ing from an exact closed-form solution, its approximate 

solution can be easily obtained by simple numerical tech-

niques. In the present investigation, these equations have 

been solved with the help of Runge–Kutta fourth-order 

method for following set of laser-plasma parameters:

�
0
= 1.78 × 10

15 rad∕sec , a = 15μm , 
a

b
= 1, d

0
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1
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−3
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ues of deviation parameter q = (3, 4,∞), beam power 
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under initial conditions fx,y = 1 and  
dfx,y

d�
= 0  at � = 0 . 

The significance of these conditions is as follows:

(1) fx,y = 1at� = 0 implies that at the entrance of the non-

linear medium the beam widths of the laser beam along 

x and y axes are a and b , respectively.

(2) 
dfx,y

d�
= 0 at � = 0 implies that initially the laser beam is 

collimated.

In order to see how the spatial profile of the optical 

beam, i.e., the value of deviation parameter q affects its 

propagation dynamics, Eqs. (7) and (8) have been solved 

for different values of q while keeping the other parameters 

fixed, i.e., n2E
2

00
= 3,

n4

n
2

2

= 0.01 and the corresponding 

behavior of the beam widths of the laser beam is depicted 

in Fig. 5. It can be seen that while propagating through the 

nonlinear medium, the cross section of the optical beam 

undergoes periodical breathing with mild ripples. In other 

words, the beam constitutes a breather soliton. The breath-

ing of the optical beam is due to its periodic focusing/

defocusing resulting from the intensity dependence of the 

index of refraction of the medium. Due to intensity 

dependence of the index of refraction of the medium, the 

high intensity regions of the wavefronts of the optical 

beam experience higher refractive index as compared to 

the regions of lower intensity. The situation is just similar 

to the focusing of an optical beam with plane wavefronts 

when it passes through a convex lens. Due to its bell-

shaped spatial profile, the center of q-Gaussian laser beam 

sees maximum index of refraction and its wings see mini-

mum index of refraction. As a result of this, the wavefronts 

of the optical beam bend inwards resulting in its 

self-focusing. As the optical beam gets self-focused with 

distance of propagation, its spot size decreases and hence 

intensity increases. As the diffraction of an optical beam 

varies inversely with its transverse dimensions, the 

decrease in beam width due to self-focusing enhances the 

tendency to diffract. Also, the resulting increase of inten-

sity increases the magnitude of quintic nonlinearity. The 

phenomenon of diffraction and quintic response of the 

medium tends to expand the transverse dimensions of the 

optical beam, with the focusing of beam the two opposing 

phenomena also come into dominance. Hence, during the 

journey of the optical beam through a nonlinear medium 

there starts a competition between the phenomenon of con-

vergence due to Kerr nonlinearity and divergence due to 

the combined effects of diffraction and quintic nonlinear-

ity. The winning phenomenon ultimately decides the 

behavior of the beam. Thus, there exists a minimum value 

of beam power above which the beam will converge and 

otherwise it will diverge while passing through the 

medium. Depending on the contribution of the Kerr non-

linearity, this divergence can be greater than or smaller 

than the vacuum diffraction. The threshold for convergence 

can be obtained by balancing the right hand sides of Eqs. 

(7) and (8) with zero. In the present investigation, we have 

taken the initial power of the optical beam to be greater 

than the threshold for convergence. That is why immedi-

ately entering into the medium the beam undergoes con-

vergence along both the transverse directions. When with 

increase in the intensity due to Kerr effect, the quintic 

nonlinearity starts dominating then the beam again starts 

to increase in its beam widths. Thus, after attaining mini-

mum possible values the beam widths of the optical beam 

bounce back toward their original values. These processes 

Fig. 5  Evolution of beam widths of the laser beam for different values of deviation parameter at fixed values of beam power 
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keep on repeating during the journey of the beam through 

the nonlinear beam establishing a breather soliton.

The mild ripples in the breathing of the soliton are due 

to the periodical variations of the diffraction due to diffrac-

tion management of the medium. The physical explanation 

of these ripples can be obtained by comparing the evolu-

tion equations of the breather, i.e., Eqs. (7) and (8) with the 

equation of motion of an inverted pendulum with oscillating 

support. A pendulum with an oscillating support can be in 

a state of stable equilibrium with its bob situated above the 

support. The inverted pendulum establishes a stable con-

figuration due to the net stabilizing force produced by sta-

bilizing and destabilizing forces acting at a frequency much 

larger compared to the natural frequency of the pendulum 

with fixed support. Similar mechanism also stabilizes a 

Bose–Einstein condensate trapped in double-well potential 

with oscillating interaction and an optical beam propagating 

in a medium with oscillating nonlinearity.

Figure 6 shows the relative behavior of the beam widths 

fx,y for the three cases shown in Fig. 5. It can be seen that 

the cross section of the elliptical beam varies from elliptical 

to circular and then back to elliptical. Thus, the shape of the 

elliptical laser beam varies in an oscillatory fashion which 

is in agreement with the results of Fig. 5. It can also be seen 

that with increase in the value of deviation parameter q , the 

oscillations in the shape of beam from horizontal ellipse to 

vertical ellipse and vice versa become faster. This is again 

in agreement with the results in Fig. 5.

At this point, it is worthy to discuss the propagation 

dynamics of laser beam with the help of phase space plots 

(Figs. 7, 8). These are the plots of the history of the changing 

variables that in present care are fx,y,

dfx,y

d�
 . Phase space tra-

jectories are a useful concept for visualizing the behavior of 

a dynamical system. For an oscillatory system like a simple 

pendulum, the circular closed phase space trajectories indi-

cate purely simple harmonic oscillations and the circular 

spiraling trajectories indicate damped oscillations. Similarly, 

Fig. 6  Relative behavior of beam widths fx and fy for different values of deviation parameter q at fixed values of beam power 
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the distorted phase space trajectories indicate chaotic nature 

of the oscillations, i.e., the oscillations containing several 

frequency components. As in present case also the phase 

space trajectories are spiraling and are distorted, this indi-

cates that the beam widths of the laser beam are breathing 

in a chaotic fashion with several frequencies. It can also be 

seen that with increase in the value of deviation parameter q 

of the laser beam, the area of the phase space trajectories of 

both the transverse beam widths reduces. This is due to 

reduced extent of self-focusing along both the transverse 

directions with increase in deviation parameter q of the laser 

beam.

Figure 9 depicts the effect of intensity of the laser beam 

on breathing of the beam widths of the laser beam. It can be 

seen that with increase in intensity of the laser beam breath-

ing of beam widths along both the transverse directions 

becomes deeper. This is due to the fact that as discussed 

above the breathing of the beam widths is due to periodic 

focusing/defocusing of the laser beam and with increase in 

the intensity of the laser beam, the focus of laser beam along 

both the transverse directions gets enhanced.

Figure 10 shows the effect of relative strength of the Kerr 

nonlinearity compared to quintic nonlinearity on breathing 

of the laser beam. It can be seen that as the Kerr nonlinearity 

becomes more and more dominating on the quintic nonlin-

earity, the breathing of the optical beam keeps on increasing. 

This is due to the reason that Kerr nonlinearity is focusing 

in nature and quintic nonlinearity is defocusing in nature.

Axial phase shift of the breather soliton

The self-phase modulation of the laser beam results from its 

longitudinal phase shift that originates from the transverse 

spatial confinement, which through the uncertainty prin-

ciple, introduces a spread in the transverse momenta and 

hence a shift in the expectation value of the axial propaga-

tion constant.

Fig. 7  Phase space plots of beam width of the laser beam along x-axis for different values of deviation parameter at fixed values of beam power 
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Fig. 8  Phase space plots of beam width of the laser beam along y-axis for different values of deviation parameter at fixed values of beam power 
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Fig. 9  Evolution of beam widths of the laser beam for different values of beam power n
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A finite laser beam is having a spread in its transverse 

momentum because it is made up of angular spectrum of 

plane waves obtained by means of Fourier transformation. 

The r.m.s spectral width �
k
 of the laser beam is defined as 

[26]

where

The wave number k
0
 of the laser beam is related to trans-

verse and longitudinal components through

where kz is the axial wave number, and k
x
 and ky are the 

transverse wave numbers, respectively. The effective axial 

propagation constant of an optical beam is defined in r.m.s 

sense as

The overall on axis phase �(z) is related to effective propa-

gation constant as
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The first term in Eq. (11) gives the phase k
0
 of an infi-

nite plane wave propagating along z-axis. The second term 

represents a phase shift of finite beam in comparison with 

infinite plane wave.

In present investigation, Eq. (13) has been solved numer-

ically in association with Eqs. (7) and (8) and the corre-

sponding evolution of axial phase of the breather soliton for 
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Fig. 10  Evolution of beam widths of the laser beam for different values of Kerr nonlinearity
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different values of deviation parameter, beam intensity and 

Kerr nonlinearity is depicted in Figs. 11 and 12.

It can be seen that axial phase �
p
 of the breather soliton 

decreases monotonically with distance of propagation, 

showing abrupt jumps at the periodic positions of the mini-

mum beam widths. These jumps of axial phase at the focal 

positions of the laser beam give it a step-like behavior. The 

monotonic decrease in axial phase with distance is due to the 

fact that the self-focusing of the laser beams with distance of 

propagation leads to reduction in volume of space available 

for its propagation. This in turn through position momentum 

uncertainty along the transverse directions

results in increase in the transverse momentum of the 

photons of the laser beam. This situation is similar to that 

observed for a quantum particle trapped in a tube or a photon 

confined in a waveguide. However, the interesting fact is that 

in the present case there is no physical boundary to confine 

the photons. Now, as the overall momentum should remain 

conserved, the increase in transverse momentum results in 

reduction in the longitudinal momentum of the photons. This 

reduction in the longitudinal momentum is the consequence 

of monotonic decrease in the axial phase of the laser beam.

Step-like behavior of the axial phase, with each step 

occurring at positions of minimum beam width, indicates 

that there is slowest decrement in �
p
 at points of minimum 

ΔxΔp
x
= constant

ΔyΔp
y
= constant

beam width. This is opposite to the behavior of phase in 

graded index fibers, where phase decreases slowest in the 

positions of minimum intensity, i.e., maximum beam width. 

This difference in the behavior of axial phase in plasmas and 

that in graded index fibers is due to the fact that due to their 

optical nonlinearity, plasmas behave as oscillating linear 

wave guides. In linear wave guides, the growth rate of axial 

phase is inversely proportional to the square of beam width.

The step-like behavior observed in the axial phase can be 

explained by its connection to Berry’s phase, also known as 

the geometric phase. Berry’s phase is an additional topologi-

cal phase that a system acquires after going through a cyclic 

adiabatic evolution in parameter space. To better grasp the 

physical significance of this geometric phase, consider the 

following illustration:

Imagine placing the tip of a pencil at the North Pole of 

a globe, aligned with one of the meridians (lines of lon-

gitude) originating from the pole. Now, move the pencil 

downward along the meridian until it reaches the equator 

while keeping it perpendicular to the equator. Next, slide 

the pencil to another meridian and move it back to the North 

Pole along this new meridian. Interestingly, you will observe 

that although the pencil has returned to its original posi-

tion without any rotations, it no longer points to the original 

meridian but rather to a new longitude.

This simple exercise demonstrates the concept of “paral-

lel transport” of a vector (a quantity with both length and 

direction) around a circuit on a curved surface, resulting in 

what is known as an anholonomy. Anholonomy refers to the 

failure of certain variables describing the system to return to 

their original values. In this example, the anholonomy arises 

Fig. 12  Evolution of axial phase of breather soliton for different val-
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because the pencil was forced to trace a circuit on the surface 

of a sphere while remaining parallel to the meridians at all 

times. It is purely a geometric phenomenon, independent 

of the pencil’s energy, mass or initial direction. The extent 

of anholonomy depends solely on the area and curvature of 

the surface enclosed by the circuit. In the case of waves, this 

anholonomy is known as the geometric phase, which mani-

fests as a shift in the wave’s phase—the quantity describing 

the wave’s position within its oscillatory cycle at any given 

time and place.

Such phase shifts originate from the dynamical phase 

inherent in any wave, be it quantum or classical. To under-

stand this dynamical phase, consider the example of a trave-

ling wave produced by jiggling a long rope fixed at one end. 

A series of photographs capturing the wave would reveal 

that points on the rope that were at the wave’s crests in one 

picture would no longer be at the crests in another picture 

(unless the photographs were synchronized with the wave). 

In other words, the phase of the wave changes from one pic-

ture to another. The rate at which the wave’s phase changes 

corresponds to the wave’s instantaneous frequency, which, 

for a stationary quantum state, is proportional to the state’s 

energy. However, since the dynamical phase does not affect 

the energy or spatial extent of a quantum system’s wave 

function, it does not influence the system while it is in a 

stationary state.

To determine the geometric phase of a system undergo-

ing a cyclic adiabatic change in its environment, one can 

plot all possible environments of the system in a parameter 

space. The parameter space consists of axes representing 

the physical variables describing the environment. A cyclic 

adiabatic change is then represented as a closed curve in this 

parameter space. In the simplest case, the geometric phase 

is determined by the area enclosed by the curve, which is 

equivalent to the solid angle subtended by the curve if it 

forms a spherical surface. For parameter spaces with more 

than three dimensions, the geometric phase can be more 

conveniently generalized by expressing it in terms of a math-

ematical quantity called a two-form. A two-form represents 

the flux or flow of a quantity through space. The geometric 

phase can be calculated by integrating or summing the two-

form over any surface that captures all the flux through the 

circuit.

Regarding the axial phase of an optical beam, the param-

eter undergoing cycling is the curvature of the wavefronts of 

the laser beam. As the laser beam undergoes self-focusing, 

the radius of curvature of its wavefronts decreases, causing 

them to become more convex. Consequently, the axial phase 

of the laser beam experiences a discontinuity at the focus.

The concept of a two-form based on geometric phase 

finds utility in describing quantum mechanical phenomena 

that are unfamiliar in our everyday experiences. However, 

it can also be extended to describe the mechanics of famil-

iar systems like springs and pendulums. John H. Hannay 

of Bristol has explored the classical counterpart of the 

quantum–mechanical geometric phase. He examined mac-

roscopic systems consisting of oscillating bodies whose 

configuration is defined by one or more angular variables. 

The system’s environment changes gradually, starting and 

ending at the same set of parameters. After completing the 

cycle, the oscillations retain their original amplitude, but the 

angles have altered.

Hannay identified that the angular shifts can be divided 

into dynamical and geometric components, similar to 

phase shifts in quantum mechanics. The dynamical part 

corresponds to what would be calculated assuming the 

angle increases at a rate equivalent to the instantaneous 

frequency of oscillation. Hannay’s achievement was rec-

ognizing the geometric contribution, now referred to as 

Hannay’s angle, and deriving a formula to calculate it as 

the flux of a two-form through a closed circuit in param-

eter space. However, it is important to note that the anal-

ogy with quantum mechanics is not entirely complete, as 

classical motions often exhibit chaotic behavior instead 

of simple oscillation. In chaotic systems, angle variables 

cannot be defined, and Hannay angles do not exist.

In one of Hannay’s examples, he envisioned a bead 

sliding without friction at a constant speed on a noncir-

cular wire loop while the loop is slowly rotated within its 

plane. In this scenario, the angle variable corresponds to 

the distance around the loop from a specific point. Han-

nay’s angle indicates the position of the bead after the 

loop’s rotation relative to where it would be if the loop had 

remained stationary. This angle is solely a geometric com-

bination of the loop’s perimeter and the area it encloses. 

It is significant for elongated, narrow loops and becomes 

negligible for circular ones.

Another example provided by Hannay illustrates the 

classical analogue of the quantum geometric phase for 

spins that are gradually turned. Consider a pendulum bob 

moving in a circular path. In this case, gravity establishes 

the symmetry direction, which is a vertical line passing 

through the center of the Earth. As the Earth rotates, the 

symmetry direction rotates in space (unless the experiment 

takes place at one of the poles). Consequently, after one 

day, the position of the pendulum bob in its circular orbit 

will be shifted by an angle—Hannay’s angle—equal to the 

solid angle subtended by the symmetry direction.

When the pendulum bob oscillates along a linear path 

rather than a circular trajectory, the displacement from its 

original position becomes more prominent. This back-and-

forth motion can be understood as a combination of two 

circular motions in opposite directions, akin to how lin-

early polarized light can be interpreted as a superposition 
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of two circularly polarized states. Over the course of a 

complete day of swinging, the two circular motions of the 

pendulum will have experienced opposing angular shifts. 

These shifts manifest as a rotation of the plane in which 

the pendulum bob swings, thus becoming noticeable.

The plots in Fig. 11 depict that with increase in the 

value of deviation parameter q there is decrease in the rate 

of change of axial phase with distance. This is due to the 

fact that as the spatial profile of the laser beam converges 

toward ideal Gaussian profile the transverse confinement 

of the laser beam due to self-focusing decreases. As spatial 

confinement of the laser beam is homeostasis for the axial 

phase shift, the reduction of self-focusing with increase 

in deviation parameter q results in reduction in the rate of 

change of axial phase with distance.

The plots in Figs. 12 and 13 indicate that with increase 

in either beam power or Kerr nonlinearity of the medium 

the rate of decrease of axial phase of the breather soliton 

increases. This is due to enhancement of the depth of 

breathing (i.e., extent of self-focusing) of the breather 

soliton.

Conclusions

In conclusion, we have investigated the formation of breather 

elliptical q-Gaussian optical solitons in cubic quintic non-

linear media. In can be concluded from the results of pre-

sent investigation that irradiance profile of the optical beam 

plays a significant role in the breathing of the spatial soliton. 

For q-Gaussian laser beams q parameter acts as a control 

parameter to control the extent of breathing of the beam. The 

results of present investigation may serve as guide for the 

experimentalists working in the area of optical communica-

tion and sensors.
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Abstract In this paper, a method is presented for excit-

ing an upper hybrid wave (UHW) in a preformed parabolic 

plasma channel. The plasma channel is magnetized per-

pendicular to the propagation direction of laser beams. The 

UHW is generated through the interaction of two q-Gaussian 

laser beams with frequencies �
1
 and �

2
 , employing the pon-

deromotive nonlinearity. The evolution of the laser beam 

spot sizes along the propagation distance is described by 

a set of coupled differential equations derived using the 

moment theory approach in the W.K.B approximation. The 

ponderomotive nonlinearity depends on the intensities of 

both laser beams, resulting in a mutual influence between 

the two beams, leading to cross-focusing. Numerical simu-

lations are conducted to examine the impact of laser and 

channel parameters on the cross-focusing of laser beams and 

its effect on the power of the generated UHW. The results 

indicate that the intensity profiles of the laser beams, channel 

depth, and strength of the static magnetic field significantly 

affect the power of the generated UHW.

Keywords q-Gaussian · Plasma Waves · Moment 

Theory · Clean Energy · Self Focusing

Introduction

At the turn of the last century, the introduction of lasers [1] 

sparked a significant surge in research within the field of 

plasma physics. The study of plasmas began in the nine-

teenth century, when Michael Faraday investigated electri-

cal discharges through gases. Modern plasma research dates 

from 1957 and 1958. During those years, Soviet Sputnik 

and American Explorer spacecrafts discovered that space 

near the earth is filled with plasma. At the same time, till 

then secret research on controlled thermonuclear fusion con-

ducted by the USA, Soviet Union and Europe was revealed 

at the Atoms for Peace Conference in Geneva, greatly 

increasing the freely available information on plasmas. 

Fusion research focuses on producing extremely hot plas-

mas and confining them in magnetic "bottles," to create the 

conditions necessary for energy-producing nuclear reactions 

to occur.

Extensive studies, incorporating both theoretical and 

experimental approaches, have been conducted to enhance 

our understanding of this subject. These collective efforts 

have given rise to various potential applications, such as 

laser-driven particle accelerators [2–5], inertial confine-

ment fusion [6, 7], X-ray lasers [8–10], laser plasma chan-

neling [11, 12], and supercontinuum generation [13]. The 

successful realization of these applications relies heavily 

on the efficient coupling of laser energy with plasmas. 

Unfortunately, the interaction length between lasers and 

plasmas is inherently limited by diffraction divergence, 

restricting it to approximately a Rayleigh length in the 

absence of an optical guiding mechanism. Diffraction 

broadening, therefore, represents a fundamental phenom-

enon that hampers the efficiency of laser–plasma cou-

pling. Consequently, there has been a renewed interest in 

extending the propagation distance of laser beams through 
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plasmas to make these applications viable. Optical fibers 

or plasma channels can be utilized to circumvent the issue 

of diffraction broadening in laser beam propagation. In 

applications involving laser––plasma interactions, laser 

beams with intensities ranging from 10
14 to 10

18
W/cm

2 

are employed. However, traditional glass fibers experience 

ionization-induced breakdown at intensities of approxi-

mately 10
12

W/cm
2 . Plasma channels, composed of free 

electrons and ions, offer a promising solution as they are 

immune to ionization, providing a means to enhance the 

efficiency of laser–plasma coupling.

During the propagation of intense laser beams through 

plasma channels, various nonlinear effects occur, including 

stimulated Raman scattering [14, 15], excitation of electron-

plasma waves [16, 17], and filamentation of the laser beam 

[12]. These effects contribute to anomalous heating of elec-

trons and ions, scattering of electromagnetic energy out of 

the channel, and the disruption of energy deposition sym-

metry in the plasma. As a result, it is crucial to conduct 

both theoretical and experimental studies to investigate these 

phenomena. Such investigations are of utmost importance 

in the field of inertial confinement fusion and other applica-

tions that involve laser–plasma interactions.

Propagation of intense laser beams through plasma 

channels can stimulate natural modes of vibration of plas-

mas, i.e., electron plasma waves [16, 17] or ion acoustic 

waves [18, 19]. Ever since first proposed by Rosenbluth 

and Liu [20], there have been substantial efforts to excite 

EPW by beating two laser beams or by forward Raman 

scattering of a single laser beam. In former scheme two 

collinear laser beams of frequency difference equal to the 

plasma frequency, resonantly drive up a plasma wave with 

phase velocity approximately equal to group velocity of 

lasers in the plasma. The plasma wave excited through this 

scheme has potential applications like electron accelera-

tion, plasma heating and current drive in tokamak, iono-

sphere heating, controlling ionosphere, plasma lasers. The 

EPW excited by beating of intense laser beams can also be 

used as diagnostic tool for obtaining information of plasma 

parameters. The excited EPW can scatter third laser beam, 

and, using the known frequency difference, one can accu-

rately estimate the plasma density. Such a method of 

excitation and detection has the inherent advantage of not 

requiring that a probe be inserted in the plasma. It could 

thus be used in measuring the properties of space plasmas 

where probing is difficult and costly. Another interesting 

feature of the optical beating to excite EPW lies in the fact 

that if one uses only one laser, the plasma is heated in the 

portion of the laser beam where the frequency is equal 

to the plasma frequency. If one uses two lasers, however, 

there will be second stage of heating, when the plasma 

has expanded sufficiently so that the plasma frequency, in 

the volume of interaction of the two laser beams, is now 

equal to the difference frequency of the two laser beams. 

In the presence of static magnetic field, the number of 

natural modes of vibrations of the plasma increases and 

excitation of a particular mode is determined by the direc-

tion of propagation of pump laser beam with respect to the 

static magnetic field and by the nature of polarization of 

the pump beam. In case of plasma channel, magnetized 

in a direction perpendicular to the propagation of laser 

beams, the EPW is excited near the upper hybrid layer and 

is therefore termed as UHW [21, 22].

A number of theoretical investigations on excitation of 

UHW have been reported in the past. Sodha et al., reported 

the excitation of an UHW by an intense laser beam in ordi-

nary mode, taking into account the ponderomotive nonlin-

earity, and they concluded that the focusing nature of the 

UHW is highly dependent on the initial power of the laser and 

strength of static magnetic field [23]. Liu studied the effects 

of self-generated magnetic field in laser produced plasma on 

the parametric decay of an extraordinary wave into two upper 

hybrid plasmons [24]. Purohit [25] investigated the excitation 

of an UHW by a rippled laser beam by taking into considera-

tion the relativistic nonlinearity in electron mass.

Most of the theoretical investigations on excitation of 

UHW have been carried out within the frame work of near 

axis approximation in which dielectric function of plasma is 

Taylor expanded up to second power or to fourth power in r 

under the assumption that the intensity profile of the laser 

beam is perfectly Gaussian. In contrast to this picture investi-

gations on intensity profile of Vulcan Petawatt laser at Ruther-

ford Appleton laboratory by Patel et al. [26], and Nakatsut-

sumi et al. [27], suggest that the intensity profile of the laser 

beam is not exactly Gaussian but is having deviations from it. 

The suggested intensity profile that fits with experimental data 

is q-Gaussian of the form f(r) = f (0)(1 +
r2

qr2

0

)−q , where the 

values of relevant parameters q and r
0
 can be obtained by fit-

ting the experimental data. Small values of q are characterized 

by expanded wings of intensity distribution. Hence, for such 

laser beams it is not appropriate to use near axis approxima-

tion. Vlasov et al., have given powerful method of moments 

in which entire wavefront of laser beam is considered as a 

whole in the interaction process. A review of literature reveals 

the fact that no earlier theoretical investigation on excitation 

of UHW has been carried out with the help of moment theory 

approach. The aim of this article is to investigate for the first 

time the effect of cross-focusing of q-Gaussian laser beams on 

excitation of UHW in preformed collisionless plasma channel 

with the help of moment theory.

This paper is structured as follows:

In Sect. 2, the dielectric function of the plasma channel 

under the effect of ponderomotive nonlinearity is obtained. 

In Sect. 3, the nonlinear coupled differential equations gov-

erning the evolution of spot size of laser beams are derived 



J Opt 

1 3

with the help of moment theory approach. The normalized 

power of excited UHW is obtained in Sect. 4. The detailed 

discussion and conclusions drawn from the results of present 

investigation are summarized in Sects. 5 and 6, respectively.

Characteristics of plasma channel

Consider the propagation of two coaxial, linearly polarized 

laser beams having electric field vectors

through a plasma channel whose index of refraction resem-

bles to that of a graded index fiber. The density profile of 

such a plasma channel is given by [28]

where N
e
(0) is the electron density on the axis of the chan-

nel, ΔN
e
= N

e
(r

ch
) − N

e
(0) is the depth of the channel and 

r
ch

 is the radius of channel. Thus, the electron density of the 

plasma in the channel increases radially, i.e., it is minimum 

on the axis of the channel and is maximum at the boundary. 

The channel is embedded in a static magnetic field B = B
0
�
�
 

as shown in Fig. 1.

These kind of plasma channels are used to extend the 

propagation of the laser beams through plasmas beyond the 

diffraction limit.

Characteristics of q‑Gaussian beam profile

At the plane of incidence, i.e., at z = 0 , the transverse ampli-

tude structure of the laser beams is given by [28]

(1)Ej(r, z, t) = Aj(r, z)e−�(�jt−kjz)ex; j = 1, 2

(2)n
0
(r) = N

e
(0) +△N

e

r
2

r
2

ch

where rj are the initial radii of laser beams. The phenom-

enological parameters qj describe the deviation of intensity 

distributions of the laser beams from Gaussian distribution. 

With the increase in the values of qj , the intensity distribu-

tions of the laser beams converge toward the Gaussian dis-

tribution and become exactly Gaussian for qj = ∞ . For z > 0 , 

energy conserving q-Gaussian ansatz for the laser beams are

where rjfj are the instantaneous radii of the laser beams. 

Hence, the functions fj are termed as dimensionless beam 

width parameters that are measure of both axial intensity and 

spot size of the laser beams.

Ponderomotive nonlinearity of plasma channel

When such high-amplitude q-Gaussian laser beams propa-

gate through the plasma, due to nonuniform intensity distri-

bution along their wavefronts, the plasma electrons experi-

ence ponderomotive force

where e and m, respectively, are charge and mass of elec-

trons, which result in their ambipolar diffusion from high 

field region to low field region. The electron density n 

responds to the laser electric fields according to

AjA
⋆

j
|z=0

= E2

j0

(
1 +

r2

qjr
2

j

)−qj

(3)AjA
⋆

j
=

E2

j0

f 2

j

(

1 +
r2

qjr
2

j
f 2

j

)−qj

(4)Fp = −
e2

4m
∇

∑

j

1

𝜔
2

j

AjA
⋆

j

(5)n = n
0
(r)e

−
∑

j 𝛽jEjE
⋆
j

Fig. 1  Propagation of laser 

beam through magnetized 

plasma channel
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where �j =
e2

8m�2

j
T

0
K

0

 are the coefficients of ponderomotive 

nonlinearity, T
0
 is the equilibrium temperature of plasma, K

0
 

is the Boltzmann constant. In this paper we shall be consid-

ering the case where laser beams vary in space, but propa-

gate in a steady state manner in time. Consequently, pon-

deromotive force completely dominates ion inertia, and must 

be balanced by pressure forces. The formal conditions for 

Eq. (5) to be valid are

• macroscopic scale length L must satisfy L >> 𝜆
d

• macroscopic velocities must be small compared with the 

sound speed c
s
=(

T
e

M
i

)
1

2 )

• macroscopic time scales must be long compared with (
L

c
s

)

.

The redistribution of electrons results in modification of die-

lectric properties of plasma channel. The modified dielectric 

function of the plasma channel can be written as

where �2

p
(r) =

4�e
2

m
n

0
(r) is the plasma frequency in the 

absence of laser beams. Using Eqs. (2–3) in Eq. (6) it can 

be shown that

where

is the linear part of dielectric function and

is the nonlinear part of dielectric function, where

(6)𝜖j = 1 −
𝜔2

p
(r)

𝜔2

j

e
−
∑

j 𝛽jEjE
⋆
j

(7)𝜖j = 𝜖0j + 𝜙j(A1A⋆

1
, A2A⋆

2
)

(8)�
0j = 1 −

�2

p0

�2

j

e
−

∑

j

�jE2

jo

f 2

j

(9)

𝜙j(A1A⋆

1
, A2A⋆

2
) =

𝜔2

p0

𝜔2

j

e
−
∑

j

𝛽jE2
jo

f 2
j

−

�

𝜔2

p0

𝜔2

0

+
𝜔2

pch

𝜔2

0

r2

r2

ch

�

e
−
∑

j

𝛽jE2
j0

f 2
j

(1+
r2

qjr2
j

f 2
j

)
−qj

�
2

p0
=

4�e2

m
Ne(0)

�
2

pch
=

4�e2

m
△ Ne

Coupled propagation of laser beams

The electric field vectors ��(r, z, t) of the laser beams satisfy 

the wave equation

Even if Ej have longitudinal components, the polarization 

term ∇(∇.Ej) of Eq. (10) can be neglected by assuming that 

the root mean square (r.m.s) radii of laser beams are much 

greater than their vacuum wavelengths or the laser frequen-

cies are much greater than the plasma frequency. Under this 

approximation, Eq. (10) reduces to

Using Eq. (1) in (11), we get

where Pj =
kj

2�
0j

�j . Equation(12) is the well-known nonlinear 

Schrodinger wave equation that describes stationary beam 

propagation in the z- direction, with the assumption that 

wave-amplitude scale length along z-axis is much larger as 

compared to characteristic scale in the transverse direction. 

This equation is called nonlinear Schrodinger equation 

because it is identical to Schrodinger equation in quantum 

mechanics, the only difference being that here the potential 

function Pj itself depends on wave-functions A
1
 , A

2
 . The 

term ∇2

⟂
Aj in wave Eq. (12) represents the spatial dispersion 

of the laser beams and is having its origin in diffraction phe-

nomenon, whereas the term PjAj represents nonlinear refrac-

tion of the laser beams.

Defining total beam powers Nj as

and global Hamiltonian Hj to the wave Eqs. (12) and (9) as

where

one can show that 
�Nj

�z
=
�Hj

�z
=0, i.e., Hj and Nj are invariants of 

wave Eq. (12). The first invariant Nj is merely a statement of 

the conservation of energy of the laser beams and second 

(10)∇2Ej − ∇(∇.Ej) +
�

2

j

c2
�jEj = 0

(11)∇
2Ej +

�
2

j

c2
�jEj = 0

(12)𝜄

dAj

dz
=

1

2kj

∇2

⟂
Aj + Pj(A1A⋆

1
, A2A⋆

2
)Aj

(13)Nj = ∫
2𝜋

0
∫

∞

0

AjA
⋆

j
rdrd𝜃

(14)Hj = ∫
2�

0
∫

∞

0

1

2k2

j

(|∇
⟂

Aj|
2 − Fj)rdrd�

(15)Fj =
1

2𝜖0j
∫

AjA
⋆
j

0

𝜙j(A1A⋆

1
, A2A⋆

2
)d(AjA

⋆

j
)
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invariant Hj relates the wavefront curvature of laser beams 

to the plasma nonlinearity. These invariants are based on the 

symmetry of Schrodinger wave equation under gauge trans-

formation and transformation along z-axis and may be 

derived from Lagrangian density for Eq. (12). It is important 

to note that Hj need not be positive definite, and is in fact 

negative when the nonlinear refraction term dominates the 

dispersion term.

Defining mean square radii < a2

j
(z) > of the laser beams 

by

one can show that

where

This can be obtained either directly by taking spatial 

moments of the envelope Eq. (12) or via standard conserva-

tion laws of classical field theory.

Using Eq. (3) in (13) and (16), it can be shown that

Using Eqs. (9), (18–21), we get following coupled differen-

tial equations governing the propagation dynamics of laser 

beams under the combined effect of ponderomotive non-

linearity and radial inhomogeneity of the plasma channel.

(16)< a2

j
(z) >=

1

Nj
∫

2𝜋

0
∫
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rdrd𝜃
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(
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Excitation of upper hybrid wave

Due to ponderomotive nonlinearity, the q-Gaussian laser 

beams get cross-focused and hence produce sharp density 

gradients in the transverse direction. The generated density 

gradients in turn produce plasma wave at frequency �=�
1

-�
2
 (Fig. 10). Upper hybrid waves can be imagined as ener-

getic surfers riding the crests and troughs of a vast plasma 

sea, where the plasma’s charged particles represent the water 

molecules. The Earth’s magnetic field acts like the ocean’s 

currents, influencing the movement of these surfing waves. 

The key characteristics and properties of upper hybrid waves 

include [29–34]:

• Frequency range Upper hybrid waves typically occur in 

the frequency range between the ion and electron plasma 

frequencies. They can bridge the gap between these two 

frequencies.

• Origin Upper hybrid waves result from the combined 

effects of the ion and electron motion within the plasma. 

They involve a balance between the inertia of ions and 

the thermal pressure of electrons.

• Propagation These waves propagate obliquely to the 

magnetic field direction, meaning they are not restricted 

to moving along magnetic field lines. Their direction of 

propagation is influenced by the angle between the wave 

vector and the magnetic field lines.

• Wave structure Upper hybrid waves have a complex wave 

structure that can exhibit both electrostatic and electro-

magnetic characteristics. They involve oscillations of the 

charged particles in response to the electric and magnetic 

fields.

Fig. 2  Variation of normalized intensity of first beam with normalized distance of propagation � and radial distance 
r
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Magnetic fields that thread through plasmas make them 

behave somewhat like such a fluid. A magnetic field 

exerts a force (the Lorentz force) on a moving electrically 

charged particle. The field can be thought of as a series 

of magnetic lines through the plasma, like the field lines 

around a bar magnet that can be made visible with iron 

filings. The Lorentz force always acts perpendicular both 

to the direction of the magnetic field line and to the direc-

tion in which a particle is moving. If the particle moves 

perpendicular to the field, the force acts like a rubber band, 

pulling the particle back and constraining it to move in 

small circles about the magnetic field line. The particle 

can, however, move freely in the direction of the magnetic 

field line. The combination of the free motion along and 

constrained, circular rotation across the magnetic field 

shapes the particle’s trajectory into a helix that winds 

around magnetic field line. The Lorentz force makes it dif-

ficult to disperse the plasma in the direction perpendicular 

to the magnetic field. The maximum distance over which 

particles can move away from the field, called the Larmor 

radius, is inversely proportional to the field strength. The 

collective motion of plasma particles across the magnetic 

field actually drags the field lines along with it. The mag-

netic field thus becomes "frozen" into the plasma. In short, 

a magnetic field endows collisionless plasmas with elastic 

properties analogous to those of a dense gas, and so a 

plasma wave crossing a magnetic field behaves somewhat 

like an ordinary sound wave.

The dynamics of generated plasma wave is governed by

• Equation of continuity: 

Fig. 3  Variation of normalized intensity of second beam with normalized distance of propagation � and radial distance 
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• Equation of motion 

• Poisson’s Equation 

 where N is the total electron density, E is the sum of 

electric fields of laser beams and UHW 

(23)
�N

�t
+ ∇(Nv) = 0

(24)m
dv

dt
= −eE − 3

K
0
T

0

N
∇N − e
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0

c

(25)∇.E = −4�eN

v = v
e
 = oscillatory velocity of electrons Using linear per-

turbation theory, Eqs.(23–25) reduce to
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(r) + n

�

E =
∑

j

Ej + E
�

(26)
�n

�

�t

+ ∇(n
0
v

e
) = 0

(27)m
�v

e

�t
= −eE

�

− 3
K

0
T

0

m
∇n

�

− e
v × B

0

c

Fig. 4  Variation of normalized intensity of first beam with normalized distance of propagation � and radial distance 
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Using Eqs.(27–29) we get, wave equation for UHW

Taking

where � = �
2
− �

1
 and k = k

2
− k

1
 , we get density perturba-

tion associated with UHW
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we get

Defining normalized power of UHW as

where

(31)
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D(�1,�2) =

⎧⎪⎨⎪⎩
1 −

k2v2

th

�2
−

�2

p0

�2

(1 +
�2

ch

�2

p0

r2

r2

ch

f 2

1
t)

(1 −
�2

c

�2
)

G(t)

⎫⎪⎬⎪⎭

2

X(E10, E20) =

��
1 +

t

q1

�−
−q1

2
−1

+
�1

�2

�����2E2

20

�1E2

10

r2

1
f 3

1

r2

2
f 3

2

�
1 +

r2

1
f 2

1

r2

2
f 2

2

t

q2

�−
q2

2
−1⎫⎪⎬⎪⎭

2

Discussion

Equations (22) and (23) are the coupled nonlinear differen-

tial equations governing the cross-focusing of two coaxial 

q-Gaussian laser beams in collisionless plasma. Equation 

(30) gives the normalized power of electron plasma wave 

generated as a result of beating of the two laser beams. 

Numerical computational techniques are used to investigate 

the beam dynamics as analytic solutions of these equations 

are not possible. It is worth noting to understand the physical 

mechanisms of various terms on the right hand sides of Eqs. 

(22) and (23). The first terms on R.H.S of Eqs.(22) and (23) 

are responsible for diffraction divergence of the laser beams 

and have their origin in the Laplacian ∇2

⟂
 , appearing in non-

linear wave Eq. (13). The second terms on R.H.S of these 

equations arise due to the combined effect of ponderomotive 

nonlinearity and nonlinear coupling between the two laser 

beams. These terms are responsible for nonlinear refraction 

Fig. 7  Variation of normalized intensity of second beam with normalized distance of propagation � and radial distance 
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of the laser beams. It is the relative competition between the 

diffractive and refractive terms that determine the focusing/

defocusing of the laser beams in plasma.

To analyze the effect of deviation of intensity distribu-

tion of laser beams from Gaussian distribution and plasma 

density on cross-focusing of the laser beams as well as beat 

wave excitation of electron plasma wave, Eqs. (22–23) and 

(33) have been solved for following set of laser–plasma 

parameters

Figures2 and 3 illustrate the effect of q
1
 i.e., deviation of 

intensity distribution of first laser beam from Gaussian dis-

tribution on focusing/defocusing of the two laser beams. 

The plots in Fig. 1 depict that increase in the value of q
1
 

�1 =1.78 × 1015];rad/sec;�2 = 1.98 × 1015];rad/sec

r1 =15 �m;r2 = 16.67 �m

T0 =106 K

leads to decrease in the extent of self-focusing of first laser 

beam. This is due to the fact that as the value of q
1
 increases 

toward higher values, the intensity of the first laser beam 

shifts toward the axial region of the wavefront and the dif-

fraction divergence of axial rays is stronger as compared to 

off axial rays. It is also observed from Fig. 1 that the laser 

beams with higher q values possess faster focusing. The 

underlying physics behind this fact is the slower focusing 

character of the off axial rays.

The plots in Fig. 3 depict that increase in the value of q
1
 

leads to increase in the extent of self-focusing of the second 

laser beam. This is due to the fact that increase in the value 

of q
1
 leads to increase in the magnitude of refractive term as 

compared to diffractive term in Eq. 23.

The plots in Figs. 4 and 5 also depict the same result that 

increase in the value of q
2
 leads to increase in the extent 

of self-focusing of first laser beam and decrease in that of 

second laser beam.

Fig. 8  Variation of normalized intensity of first beam with normalized distance of propagation � and radial distance 
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Figures 6 and 7 describe the effect of plasma density on 

focusing/defocusing of the two laser beams. It is observed 

that increase in plasma density leads to increase in extent of 

self-focusing of both the laser beams. This is due to the fact 

that increase in plasma density leads to increase in number 

of electrons contributing to ponderomotive nonlinearity.

Figures 8 and 9 depict the effect of depth of plasma chan-

nel on focusing/defocusing of the two laser beams. It can 

be seen that more is the depth of plasma channel more is 

the extent of self-focusing of the two laser beams. This is 

due to the fact that radial plasma density gradient favors the 

nonlinear refraction of the two laser beams.

Figures 11 and 12 illustrate the effect of deviation of 

intensity distributions of the laser beams from Gaussian dis-

tribution on power of generated plasma wave. It is observed 

that amplitude of the generated plasma wave is maximum 

at the focal spots of the two laser beams. This is due to the 

fact that focal spots of the laser beams are the regions of 

very high intensity and hence act as source for plasma wave 

generation. It is observed form Fig. 10 that increase in the 

value of q
1
 leads to decrease in the amplitude of plasma wave 

at the focal spots of first laser beam whereas there is increase 

in amplitude of plasma wave at the focal spots of the second 

laser beam. This is due to the fact that increase in the value 

Fig. 9  Variation of normalized intensity of second beam with normalized distance of propagation � and radial distance 
r
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Fig. 10  Excitation of UHW
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of q
1
 leads to decrease in the extent of self-focusing of first 

laser beam and to increase in that of second laser beam. Sim-

ilarly, the plots in Fig. 11 depict that increase in the value 

of q
2
 leads to increase in the amplitude of plasma wave at 

the focal spots of first laser beam and decrease in amplitude 

of plasma wave at the focal spots of the second laser beam.

Figures 13 and 14 illustrate the effect of plasma density 

and depth of plasma channel on power of excited UHW. It 

can be seen that both plasma density and depth of plasma 

channel help to enhance the power of excited UHW. This is 

due to the enhancement of extent of self-focusing of both the 

laser beams with increase in these parameters of the plasma 

channel.
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Conclusions

In this paper, authors have investigated the cross-focusing of 

two intense coaxial q-Gaussian laser beams in collisionless 

plasma and subsequently its effect on beat wave excitation 

of UHW. The following important conclusions have been 

drawn from the present analysis:

• Greater is the extent of deviation of intensity distribution 

of one laser beam from Gaussian distribution, greater is 

the extent of its self- focusing, and lesser is the extent of 

self-focusing of other laser beam.

• Increase in plasma density enhances the extent of self-

focusing of both the laser beams as well as the amplitude 

of generated plasma wave.

• Amplitude of generated plasma wave is maximum at the 

focal spots of the two laser beams.

• Increase in the q value of one laser beam leads to 

decrease in the amplitude of generated plasma wave at 

its focal spots while there is an increase in the amplitude 

of generated plasma wave at the focal spots of the other 

laser beam.

The results of present analysis may be of importance in vari-

ous contexts of laser plasma physics. Besides its obvious 

relevance to inertial confinement fusion and beat wave accel-

erators, these results can also be helpful in other applications 

requiring laser beams with localized energy. The present 

investigation may be useful for experimentalists working in 

the area of laser plasma interactions.
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Abstract Chirping of spatial frequency of q-Gaussian 

laser beams interacting nonlinearly with plasmas with radi-

ally inhomogeneous electron density has been investigated 

theoretically. Due to the radial nonuniformity of the electron 

density, the index of refraction of the plasma channel resem-

bles to that of a graded index fiber. Chirping or modulation 

of spatial frequency also known as phase anomaly occurs 

due to position momentum uncertainty of photons. Due to 

intensity gradient over the laser cross section, the trans-

verse component of ponderomotive force becomes finite. 

This results in redistribution of carriers in the irradiated 

potion of the channel. This results in the enhancement of 

the radial gradient of the density profile that stimulates the 

laser beam to get self-focused. The reduction in transverse 

dimensions of the laser beam in turn leads to spread in trans-

verse momentum of its photons. This transverse momen-

tum spread then modifies the axial phase of the laser beam. 

Following Virial theory, equations of motion for radius and 

spatial frequency of the laser beam have been obtained. The 

equations so obtained have been solved numerically to envi-

sion the effect of various laser and plasma parameters on the 

evolution of beam envelope. Manifestation of axial phase to 

Berry phase has also been explained.

Keywords q-Gaussian · Virial theory · Self-focusing · 

Gouy phase

Introduction

The additional accumulation of axial phase of a converging 

beam in comparison with an infinite plane wave is known 

as modulation of spatial frequency or Gouy phase shift [1]. 

In his experiment, Gouy reflected a beam of light emerging 

from a pin hole, from both a curved and flat mirror. The 

focusing beam over lapped with the nonfocusing beam in a 

region near the focus and created a circular diffraction pat-

tern. Gouy then looked at the circular diffraction pattern at 

several different locations, both before and after the focus. 

He observed that the central region of the diffraction pattern 

changed from bright to dark, indicating an axial phase jump 

of the focusing beam—the Gouy phase shift.

Observing Gouy phase shift is relatively easy, but 

explaining it is not. Since its discovery, the Gouy phase 

shift has remained a matter of debate. Curiosity about its 

origin and physical meaning is still at the vanguard of inves-

tigations. Various theories [2, 3] (ranging from classical to 

quantum) have been used to explain its origin. Classically 

the phase shift of an optical beam arises due to the contribu-

tion of an additional phase in the neighborhood of the beam 

focal spot arising from the second-order derivative of field 

amplitude with respect to transverse coordinates. However, 

in quantum mechanical terms the Gouy phase shift is con-

sidered to be originating as a consequence of modification of 

its transverse dimensions. Converging beams going through 

focus have finite spatial extent in the transverse plane. The 

uncertainty relation then induces some distribution over the 

transverse and consequently longitudinal wave vectors. The 

net effect of this distribution over wave vectors is an overall 

phase shift.

Since the discovery of lasers [4], the anomalous behavior 

of the spatial frequency also known as axial phase or wave 

number of the optical beams has been drawing attention of 
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the researchers due to its relevance in a number of appli-

cations and physical problems. In wave optics, it explains 

the phase shift obtained by the secondary wavelets emerg-

ing from primary wave front. In the working of lasers, it 

decides the resonant frequencies of various transverse modes 

in laser cavity. Axial phase jump of optical beams also play 

a significant role in applied physics problems. A potential 

example is optical trapping of particles where it produces 

lateral trapping force [5] and also provides a mechanism for 

the tracking of trapped particles [6, 7]. Moreover, a number 

of schemes for higher harmonic generation [8, 9] of optical 

beams use the concept of longitudinal phase shift to meet 

the phase matching condition.

Over past few decades, a number of theoretical and 

experimental investigation on Gouy phase shift of laser 

beams have been reported by various researchers. Erden 

and Ozaktas [10] investigated Gouy phase shift of Gaussian 

laser beams propagating through first-order optical systems. 

Andresen et al. [11] investigated similarity between spectral 

phase shift and the Gouy phase shift. Gordon and Barge [12] 

investigated the effect of axial phase shift on coherent phase 

control of chemical reactions. From literature review, it has 

been observed that in almost all the previous investigations 

on Gouy phase shift, the irradiance over the cross section of 

the laser beam has been considered to be ideally Gaussian. 

However, by investigating experimentally, Patel et al. [13] 

have shown that although the laser operates in  TEM00 mode, 

the irradiance over its cross section is not ideally Gaussian. 

A significant amount of the laser energy was found to be 

present in the off-axial region of the beam cross section. The 

difference in the behavior of irradiance over the laser beam 

wave front from ideal Gaussian is due to cavity imperfec-

tions that may be inherent or accidental in nature. By fitting 

into the experimental data, it was shown that [14] the actual 

irradiance over the beam’s cross section can be modeled by 

a set of distribution functions known as q-Gaussian distri-

bution given by Tsalli [15]. Till date, no experimental or 

theoretical investigation on Gouy phase shift of q-Gaussian 

laser beams in nonlinear media has been reported by any 

researcher. Thus, this paper aims to investigate for the first 

time Gouy phase shift of self-focused q-Gaussian laser 

beams in preformed plasma channels.

Index of refraction of plasma channel 

under ponderomotive nonlinearity

Consider the interaction of an intense laser beam with a pre-

formed plasma channel. The axis of the plasma channel is 

along the z axis, and the laser beam axis is coinciding with 

the channel axis. The electron density of the plasma channel 

varies parabolically with radial coordinate as [16]

where  n0 is the axial electron density of the channel, Δ n is 

the difference in the electron density at the edge of the chan-

nel and that at the axis and rch is the radius of the plasma 

channel. Due to the transverse intensity gradient over the 

laser beam, the free carriers in plasma experience a radial 

force

known as ponderomotive force. Due to this ponderomo-

tive force, the plasma electrons migrate from high intensity 

region of the illuminated portion of the channel toward its 

edges. This migration of electrons, thus, increases the depth 

of the channel. The modified electron density is given by 

[17]
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Equation (5) gives the optical nonlinearity of plasma 

channel due to the ponderomotive force. Thus, it is also 

known as ponderomotive dielectric function of the plasma 

channel.

Beam width evolution

The starting point for the investigation of evolution of 

an optical beam through a nonlinear medium is the wave 

equation

As the potential function � is a function of filed amplitude 

A, Eq. (6) is nonlinear and nature, and thus, it does not fol-

low superposition principle. Hence, conventional methods 

of solving partial differential equations are not applicable 

to Eq. (6). Thus, in order to have physical insight into the 

propagation dynamics of the laser beam, semi-analytical 

methods such as variational method, method of moments 

and source-dependent expansion method are used for this 

equation.

In the present study, we have used Virial theory [18] to 

obtain an approximate solution of Eq. (6). According to 

Virial theory, evolution of a laser beam through a nonlin-

ear medium is a variational problem characterized by the 

Hamiltonian

with

The basic idea of Virial theory is then the selection of a 

trial function containing the physical parameters of interest. 

This trial function characterizes the actual solution of the 

problem as close as possible. The Virial theory then recasts 

the original problem of solving a PDE into that of solving a 

set of ODEs governing the evolution of these parameters. In 

the present analysis, we assume A(r; z) takes the form of the 

function given by [19, 20]

(5)�(AA∗) =
�2

p0

�2

0

e−�AA∗|r=0 −

(
�2

p0

�2

0

+
�2

pch

�2

0
r2

ch

r2

)
e−�AA∗

(6)i
𝜕A

𝜕z
=

1

2k
0

∇2

⊥
A +

k
0

2𝛽
0

𝜙(AA
∗)A

H = ∫ Hrdr

H = |∇⊥A |2 −
1

2𝜖
0

∫ 𝜙(AA
∗)d(AA

∗)

(7)A(r, z) =
E00

f

(

1 +
r2

qr2

0
f 2

)−
q

2

ei�

where the function f (z) is one of the key parameters of the 

present investigation. Its physical significance is twofold: (1) 

Upon multiplication with equilibrium beam radius, it gives the 

instantaneous beam waist size, i.e., radius of the laser beam at 

a given location inside the plasma channel, and (2) on dividing 

the laser amplitude, it gives the measure of axial intensity of 

the laser beam. Hence, in the standard literature the function 

f(z) is referred to as dimensionless beam width parameter. The 

phenomenological constant q is related to the imperfections of 

the laser system, and its value has to be found by fitting into the 

experimental data. It describes how much the irradiance over 

the beam cross section is deviating from ideal Gaussian pro-

file. Hence, the parameter q is termed as deviation parameter. 

The function �(z) is known as longitudinal phase of the laser 

beam which is also known as Gouy phase. The Virial theory 

defines the effective beam width of an optical beam in root 

mean square (r.m.s) sense as

where

and

Differentiating Eq. (8) twice with respect to z and making 

use of Eq. (6), it can be shown that the effective beam width of 

the beam envelope evolves according to the equation
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Thus, from Eq. (9) it can be seen that the Virial theory 

provides a rule, expressed mathematically as an ordinary dif-

ferential equation, that describes how the beam width of the 

laser beam evolves during its propagation through a nonlinear 

medium, in the present case through a plasma channel with 

graded index of refraction. Although Eq. (9) also cannot be 

integrated to get an exact analytical solution, its approximate 

solution can be easily obtained with the help of simple numeri-

cal techniques. Before actually attempting to solve Eq. (9), it is 

worth identifying the physical significance of the various terms 

on its right-hand side (RHS). The first term on the RHS of 

Eq. (9) has its origin in the light’s fundamental wave nature of 

diffraction. Hence, the first term governs the diffraction broad-

ening of the laser beam during its propagation. The second 

term on RHS of Eq. (9) originates under the combined effects 

of radial inhomogeneity of plasma channel and the pondero-

motive nonlinearity produced by the nonuniform irradiance 

of the laser beam. The ultimate competition between these 

two terms dictates whether the beam will converge or diverge.

Spatial frequency chirp

Using Eq. (7) in (6) and equating imaginary parts, we get

Taking zeroth-order spatial intensity moment of this 

equation, we get

where

Equation (10) is the governing equation for the evolution 

of spatial frequency of the laser beam along the length of 

the plasma channel.
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Results and discussion

In solving eqs. (9) and (10), it has been assumed that while 

entering into the channel the laser beam is collimated and is 

having plane wave front. Mathematically these conditions 

are represented as f = 1, 
df

d�
 = � = 0 at �=0. In the present 

study, eqs. (9) and (10) have been solved for a typical set of 

parameters: �
0
= 1.78 × 10

14
rad sec−1 , r0 = 15 μm, n0 =

(

1.5 × 10
18

, 2 × 10
18

, 2.5 × 10
18
)

cm
−3 , Δn = (0, 10, 15) cm−3 , 

E00 = (3 × 10
9
, 6 × 10

9
, 9 × 10

9) Vm−1 and q = (3, 4, ∞ ). The 

corresponding evolutions of beam with and axial phase of 

the beam are shown in the form of graphs in Figs. 1, 2, 3, 4, 

5, 6, 7, 8, 9.

It can be seen that the envelope of the laser beam 

evolves in a sausage-like manner through the plasma 

channel, i.e., its beam width undergo harmonic variations 

in such a way that the laser beam is passing through a 

linear array of periodically spaced convex lenses. These 

harmonic variations of the beam width are due to periodic 

focusing/defocusing of the laser beam. As the index of 

refraction of the plasma channel increases with intensity 

of the laser beam (Eq. 5), the most intense central part of 

the bell-shaped beam sees a higher index of refraction than 

its wings. This effectively slows down the phase of the 

central part of the beam leading to a curved, concave wave 

front around beam axis, which causes focusing of the beam 

as it is propagating through a convex lens. As this now-

focusing beam propagates, its intensity further increases, 

and the central part of the beam is retarded even more 

by the changing refractive index. This process continues 

till the ponderomotive nonlinearity gets saturated, i.e., 

almost all the illuminated region of the plasma channel 

gets evacuated from the electrons. The beam then propa-

gates as if it is propagating through vacuum, i.e., it again 

starts diverging. Now, as the beam width of the laser beam 

jumps back toward its original value, the ponderomotive 

force again comes into picture and starts opposing diffrac-

tion. Hence, during the journey of the laser beam through 

the plasma channel there starts a competition between the 

two phenomena of diffraction and nonlinear refraction 

due to radial inhomogeneity of the plasma channel and 

ponderomotive nonlinearity. The ultimate behavior of the 
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beam is decided by the winning phenomenon. As the two 

phenomena win the competition periodically, the beam 

width of the laser beam evolves in an oscillatory manner.

Reduction in focusing of the laser beams with their irradi-

ance closer to Gaussian profile is also shown in Fig. 1. This 

is due to localization of most of the beam power in a narrow 

region around the axis of the laser beam for beams with 

larger value of deviation parameter q. Hence, such beams get 

a very little contribution from the rays away from the beam 

axis in order to generate optical nonlinearity in the medium. 

As the self-focusing effect is a consequence of nonlinear 

refraction, laser beams with their intensity profiles closer to 

Gaussian profile show relatively lesser self-focusing.

The plots in Fig. 1 also indicate that instead of their 

reduced focusing, the laser beams with higher value of 

deviation parameter q possess faster focusing character. 

This is due to the faster focusing character of axial rays. 

Being away from the axis, off-axial rays take more duration 

to get self-focused. As there are more number of off-axial 

rays in laser beams with lower q values, by increasing the 

value of deviation parameter q, the focusing of the laser 

beam becomes faster. This result of faster focusing of laser 

Fig. 1  Effect of deviation 

parameter “ q ” on self-focusing 

of laser beam

Fig. 2  Effect of “ q ” on laser 

beam wave front curvature dur-

ing its propagation
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beams with lower q value is contrary to that reported by 

Sharma and Kourakis where it was shown that laser beams 

with lower value of q possess slower focusing. This differ-

ence between the two results is mainly due to the reason 

that in their analysis Sharma and Kourakis have expanded 

the dielectric function of the plasma only up to  r4. However, 

by analyzing the q-Gaussian distribution it can be seen that 

change in the value of deviation parameter q is having hardly 

any effect on the irradiance in the regions closer to the axis. 

The change in the value of deviation parameter q affects the 

irradiance only in the regions away from the beam axis that 

has been eliminated in the analysis of Sharma and Kourakis. 

However, in our study the dielectric function of the plasma 

has been considered as a whole. Thus, it can be concluded 

that by optimizing the value of deviation parameter q, one 

can control focusing as well as the location of the focal spot 

of a laser beam.

The graphical curves in Fig. 2 depict the variations of 

beam wave front curvature. The periodic changes in the sign 

of wave front curvature indicate that during the journey of 

Fig. 3  Effect of plasma density 

on self-focusing of laser beam

Fig. 4  Effect of channel depth 

on self-focusing of laser beam
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the laser beam through the plasma channel, its wave front 

periodically changes form plane wave front to convex and 

then again from convex to plane and then from plane to con-

cave. All these processes keep on repeating in an oscillatory 

fashion.

The curves in Fig. 3 are showing the effect of electron 

density on focusing of the laser beam. It can be seen that an 

increase in the plasma density enhances the focusing of the 

laser beam. This is due to the fact that the increase in the 

electron density makes the ponderomotive force stronger. 

As the focusing of the laser beam is occurring as a conse-

quence of ponderomotive force acting on the electrons, the 

increase in the electron density enhances the self-focusing 

of the laser beam.

The graphical curves in Fig. 4 show the effect of chan-

nel depth on focusing of the laser beam. It can be seen that 

Fig. 5  Effect of laser field 

amplitude on its self-focusing

Fig. 6  Effect of deviation 

parameter q on axial phase shift 

of laser beam
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for a given set of laser and plasma parameters minimum 

focusing is occurring in the absence of radial inhomogene-

ity, i.e., for Δn = 0, and with the increasing channel depth, 

focusing gets enhanced and occurs earlier. This is due to 

the reason that the channel depth enhances the radial inho-

mogeneity of the index of refraction. As parabolic plasma 

channels are analogous to graded index fibers based on 

total internal reflection, the increase in the channel depth 

helps in improving the focusing of the laser beam. Thus, 

it may be concluded from the curves in Figs. 3, 4 that 

for a given laser beam the focusing can be controlled by 

optimizing the electron density or radial inhomogeneity 

of the channel. In applications like laser-driven plasma-

based accelerators where tight focusing of the laser beams 

as well as low electron density of the plasma are the major 

prerequisites, the plasma channels with parabolic radial 

density profile may offer themselves as an ideal candidate.

Fig. 7  Effect of plasma density 

on axial phase shift of laser 

beam

Fig. 8  Effect of channel depth 

on axial phase shift of laser 

beam
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The effect of initial intensity of the laser beam on its 

self-focusing is depicted in Fig. 5. It can be seen that laser 

beams with higher focusing possess higher focusing charac-

ter. This is due to that fact that like the electron density, the 

intensity of the laser beam also makes the ponderomotive 

force stronger. Thus, initial laser intensity also enhances its 

focusing.

Figures 6, 7, 8, 9 illustrate the evolution of axial phase 

of the laser beam with distance along the plasma channel. It 

can be seen that the axial phase of the laser beam decreases 

monotonically with distance, showing steplike behavior. 

This is due to the periodical self-focusing/defocusing of 

the laser beam. As the laser beam undergo self-focusing, 

its intensity increases, and hence, the laser phase fronts 

start experiencing larger refractive indices. This results in 

decreased phase velocity of the phase fronts that leads to 

decreased spacing between the phase fronts. This fact can 

be explained in another way. The axial phase shift of the 

laser beam occurs due to the transverse momentum gained 

by the photons due to the reduction in the volume of space 

available for their propagation. As the transverse spatial con-

finement of the laser beam occurs due to self-focusing, the 

photons gain additional transverse momentum ( kx;ky ) due 

to position momentum uncertainty Δk
x
Δx = constant and 

ΔkyΔy = constant . As the overall momentum of the laser 

beam is conserved, the increase in the transverse momentum 

reduces the longitudinal momentum. Thus, during the prop-

agation of laser beam its longitudinal momentum reduces 

as the beam keep on focusing. This results in monotonic 

decrease in its axial phase.

Steplike behavior of the axial phase is also shown in 

Figs. 6, 7, 8, 9. This indicates that while moving from one 

focal position to another the axial phase of the laser beam 

remains almost constant at the position of its focus, the axial 

phase takes an abrupt jump. This behavior of the axial phase 

can be explained through its manifestation to Berry’s phase. 

Berry phase is an additional geometrical (topological) phase 

that a system acquires after a cyclic adiabatic evolution in 

parameter space. In case of axial phase of an optical beam, 

the parameter that is cycled is the wave front curvature of the 

laser beam. As the laser beam gets self-focused, the radius 

of curvature of its wave fronts decreases as the wave fronts 

become more and more convex due to self-focusing. Hence, 

the axial phase of the laser beam takes a jump the focus. As 

the laser beam gets maximum possible intensity, the nonlin-

ear terms in beam width equation (Eq. 9) vanishes. Hence, 

the laser beam propagates as if it is propagating through 

vacuum, i.e., it starts diverging, and hence, the wave front 

curvature changes its sign, i.e., it becomes convex from con-

cave. Now till the wave fronts again become plane when the 

nonlinearity of the medium comes into picture, the axial 

phase of the beam remains almost constant. Hence, as the 

wave front curvature changes periodically, the axial phase 

of the laser beam shows steplike behavior with abrupt jumps 

at the focal positions.

Figure 6 shows that with the increase in the value of devi-

ation parameter q there is a reduction in the rate of change 

of axial phase of the laser beam with distance. This is due to 

the one to one correspondence between the extent of focus-

ing of the laser beam and the rate of decrease in its axial 

phase. As with increasing q, the focusing of the laser beam 

gets reduced; hence, the rate of change of axial phase also 

reduces with an increase in the deviation parameter q.

The curves in Figs. 7, 8, 9 indicate that with the increase 

in either plasma density, channel depth or laser intensity, the 

rate of decrease in the axial phase increases. This is due to 

enhancement of focusing of the laser beam with an increase 

in these parameters.

Fig. 9  Effect of laser field 

amplitude on its axial phase 

shift
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Physical significance of k‑space

To grasp the physical significance of k-space, imagine 

observing a caricature of Einstein through a pair of lenses. 

The light waves emanating from the artwork enter the ini-

tial lens and undergo refraction (bending) based on their 

spatial frequencies. Waves with lower frequencies experi-

ence minimal refraction, passing directly through the central 

region of the lens. On the other hand, waves with higher 

frequencies are refracted more noticeably at the outer edges. 

The outcome produced by the first lens is a sequence of 

indistinct wave fronts, where spatial frequencies increase 

toward the outer boundaries and decrease toward the center. 

These waves interact in ways that either reinforce or cancel 

each other out. In this manner, the initial lens has effectively 

executed an "optical" Fourier transformation of the incom-

ing light rays.

Positioning your head at the midpoint between the two 

lenses, known as the Fourier plane, and gazing back toward 

the caricature, your sight would encounter only an indefi-

nite, hazy radiance symbolizing the mean light intensity that 

enters the initial lens. The light waves lack focus and would 

not coalesce into an image on your retina. This state is what 

can be referred to as being situated in "optical" k-space.

The second lens undoes this process by reassembling 

the previously dispersed waves in optical k-space, restor-

ing them to their original relationships. Consequently, the 

second lens functions as an inverse Fourier transformation, 

facilitating the formation of a well-defined image. Why is 

it that an image of the k-space "galaxy" is not observable 

when you position your eye at the Fourier plane? One factor 

is that the human eye perceives only magnitude, whereas a 

lens combines both phase and magnitude data. To effectively 

perceive the anticipated optical k-space pattern, a more 

sophisticated apparatus known as a "4- f  " setup is required. 

This 4- f  configuration comprises a highly focused mono-

chromatic laser light source, a filter or screen positioned at 

the Fourier plane and detection through a sensitive charge-

coupled device. Such 4-f experiments are commonly used in 

advanced physics or engineering courses focused on optics 

and can be procured from suppliers specializing in scientific 

educational equipment.

Even if the cartoon analogy did not provide clarity, the 

key takeaway remains unchanged: k-space serves as a decon-

structed representation of the inherent spatial frequencies 

within the original object. In the case of light waves, the 

transformation from an object to optical k-space is swift 

and direct, achieved through the use of a lens. However, 

for MRI, the procedure is more intricate and time-intensive. 

It involves collecting signals subsequent to stimulating 

the object with multiple RF pulses and variable gradients. 

Nonetheless, the outcome is consistent: the creation of an 

assortment of k-space data systematically arranged based on 

spatial frequency. Whether in the realms of optics or MRI, a 

subsequent reversal of this process unfolds, culminating in 

the reassembly of dispersed waves to form a coherent final 

image (Fig. 10).

Conclusion

In the present work, the authors have investigated axial phase 

shift also known as Gouy phase shift, of q-Gaussian laser 

beams propagating through collisionless plasma channels. 

It has been concluded that spatial confinement of the laser 

beam resulting from its self-focusing due to the pondero-

motive nonlinearity of the plasma channel leads to spread 

in the transverse momentum of the laser beam. This in turn 

leads to jump in the axial phase of the laser beam at its focal 

spots. The results of the present investigation may serve as a 

Fig. 10  Analogy for physical significance of k-space
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guide for the researchers working in the area of laser plasma 

interactions and nonlinear optics.
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Abstract This paper presents theoretical investigation on 
third harmonic generation (THG) in nonlinear media. Vari-
ational method has been adopted to find the semi analytical 
solution of the wave equation governing the evolution of 
slowly varying beam envelop in nonlinear medium. Empha-
sis is put on investigating the evolution of beam width of 
the laser beam with distance through the medium. When 
laser beam with frequency �

0
 propagates through a nonlin-

ear medium dominated by � (3) nonlinearity, oscillations of 
the electrons of the medium contain a frequency compo-
nent �

3
= 3�

0
 and thus produce third harmonic of the pump 

beam. An equation governing the conversion efficiency of 
third harmonic has been derived. Deviation of intensity pro-
file of the incident laser beam from ideal Gaussian profile 
has also been incorporated through q-Gaussian profile.

Keywords Self focusing · Cubic quintic · q-Gaussian · 
Harmonic generation

Introduction

The quest for short wavelength coherent radiation sources 
for medical diagnostics and treatment, homeland security, 
plasma diagnostics, etc. has a long history. For past few dec-
ades only two main approaches, namely free electron lasers 
and synchrotron had been considered for this purpose. How-
ever, involvement of large infrastructure, accelerators, beam 

lines and massive gantries of more than 100 tons, makes 
these techniques are quite expensive. As a result, access to 
these facilities is quite limited, specifically for less affluent 
institutes like universities and hospitals these facilities are 
not affordable and therefore the research related to them is 
not growing at a faster pace.

By bringing coherent short wavelength sources off the 
shelf, the process of laser HHG can reduce the cost of coher-
ent radiation sources. The reduction in cost is not only due 
to the replacement of accelerator but also due to the fact that 
there will be no requirement of large building footprints and 
massive gantries. To understand the generation of higher 
harmonics in nonlinear media let us see what happens when 
an intense laser beam passes through a transparent optical 
medium. The focused light from certain lasers has an elec-
tric field as strong as  107 V  cm−1. Such optical fields are as 
intense as the cohesive local electric fields in the crystal. 
Consequently when intense laser beams enter a transparent 
crystal, they cause a massive redistribution of the electrons 
and the resulting polarization is no longer proportional to the 
optical electric field. In fact, at optical fields of  l07 V  cm−1 
and higher many materials break down completely.

Figure 1 illustrates the characteristic response when an 
intense optical electric field travels through a nonlinear, or 
ionic, material. It shows that an intense field in the "right" 
direction is more effective in polarizing the material than 
a field in the "left" direction. Such a situation can occur 
only in a crystal that has a "one-wayness" in its structure, 
or, to be more precise, one that has no center of sym-
metry. Such crystals are called as noncentro symmetric 
crystals. Of the crystals found in nature only about 10% 
fall in this class, and they usually exhibit the phenom-
enon called piezoelectricity. When a piezoelectric crystal 
is subjected to mechanical pressure, its asymmetry leads 

 * Naveen Gupta 
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to unequal distortions in the distribution of positive and 
negative charge and a voltage appears across the faces of 
the crystal.

The distorted polarization wave produced by an intense 
laser beam travels at the same velocity as the light wave. It 
can be shown by Fourier analysis that the distorted wave is 
the sum of three components: a wave at the fundamental fre-
quency � of the light wave, a wave at the second-harmonic 
frequency (2�) and a third component that corresponds to a 
"direct current," or steady, polarization (Fig. 2).

Due to the second-harmonic polarization wave the crystal 
now behaves like a highly directional antenna, supporting 

a wave of current at frequency 2� and thus radiates a light 
wave at frequency double of that of incident wave.

In case of ordinary symmetrical crystals and isotropic 
materials such as glass and liquids also the nonlinear phe-
nomena can be observed. These materials become non-
linear in the presence of sufficiently intense fields, but the 
effects are much weaker than those found in asymmetric 
materials. Because symmetrical materials lack an intrinsic 
one-wayness, the polarization wave produced by an intense 
light beam is not skewed left or right as it is in asymmetric 
materials (Fig. 3). Instead the electronic charges in the 
material are displaced equally to the left and to the right. 

Fig. 1  a Nonlinear Polarization of medium. b Nonlinear response of crystal

Fig. 2  Frequency components 
of polarization waves
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The nonlinearity arises from the fact that the displacement 
can no longer follow in exact proportion as the electric 
field rises to peak intensity.

When this sort of distorted polarization wave is ana-
lyzed into its components, it is found to consist mainly of a 
pure wave of the fundamental frequency and a weak third-
harmonic wave (Fig. 4). The third harmonic of ruby laser 
light (6,943 Å) occurs in the far ultraviolet at 2,314 Å. It 
has been produced in calcite with a conversion efficiency 
of three parts per million.

The interaction of laser beams with nonlinear media 
can stimulate several nonlinear effects [1–3] that signifi-
cantly affect the process of harmonic generation. One such 
phenomenon is self-focusing that occurs due to the modi-
fication of optical properties of the medium by the laser 
beam. The presence of intense laser beams in nonlinear 
optical media makes their index of refraction a function 
of laser intensity. Hence, maximum index of refraction 
occurs where the intensity is highest. In other words, the 
beam induces a convex lens in the medium and thus its 
intensity gets accumulated towards the axis of the beam. 

The resulting increase in the intensity enhances the effi-
ciency of its conversion to third harmonics.

Since its discovery by Franken [4] a vast literature has 
been reported on HHG of laser beams in nonlinear media. 
Literature review [5–8] indicates that the investigations 
reported on THG, till date, are focused on the investigation 
of propagation dynamics of ideal Gaussian beams. How-
ever, experimental investigations reveal that due to cavity 
imperfections like misalignment of end mirrors, presence of 
impurities in the gain medium, etc., the irradiance over the 
cross section the beam is not having ideal Gaussian profile. 
However, due to these cavity imperfections the wings of 
the intensity profile are slightly expanded as compared to 
ideal Gaussian profile. The actual profile for the irradiance 
over the cross section of the laser beam can be characterized 
by a class of distribution functions known as q-Gaussian 
distribution. This paper aims to present for the first time, a 
theoretical investigation on the effect of self-focusing of q
-Gaussian laser beams on THG in media exhibiting cubic-
quintic optical nonlinearity.

Dynamics of pump beam

Consider the interaction of a linearly polarized electromag-
netic beam having electric field

with a nonlinear medium characterized by higher order sus-
ceptibilities � (3) , ` � (5),� (7) , and so on. For anisotropic media 
these higher order susceptibilities are generally tensor in 
nature that can be explained as follows:

when an electron in the dielectric lattice is displaced from 
equilibrium, it will experience not only a restoring force, but 
also forces from the neighboring molecules (Fig. 5).

A field applied in the x direction may result in an electron 
moving in the y and z directions as well (Fig. 6).

The strength and direction of these forces depend very 
much on the structure of the crystal. Thus, the susceptibil-
ity of an anisotropic medium is in general a tensor of rank 2 
having 9 terms (A tensor is the most general product of two 
or more vectors. The number of vectors multiplied equals the 
rank of the tensor. A tensor of rank n contains 3n elements.). 
For isotropic media like glass these higher order susceptibili-
ties are scalar in nature. The effective dielectric function of 
such a medium is given by

where �
0
 is the intensity independent component of dielectric 

function and is related to the wave number k
0
 of the laser 

beam as k
0
=

�
0

√

�
0

c
 . Laser beam propagation through such 

(1)E(r, z, t) = A0(r, z)ei(k0z−�0t)e
x

(2)
� = �

0
+
∑

n

n!
(

n−1

2

)
!

(
n+1

2

)
!

2
1−n

�
(n)|
|A0

|
|
n−1

Fig. 3  Nonlinear polarization in symmetrical crystals

Fig. 4  Frequency components of polarization wave in symmetric 
crystals
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a medium is modeled by wave equation (that can be obtained 
from Maxwell’s equations)

Equation (3) is identical to a well-known wave equation 
known as nonlinear Schrodinger equation (NSE) that gov-
erns the transmission of electromagnetic waves through 

(3)

2i
�A

0

�z
= ∇2

⟂
A

0
+ 2k

2

0

�2

0

c2

⎛⎜⎜⎜⎝

�
n

n �
n−1

2

�
 

�
n+1

2

�
 

2
1−n� (n)��A0

��n−1

⎞
⎟⎟⎟⎠
A

0

nonlinear media and is a statement of interplay between 
nonlinearity and diffraction.

Although Eq. (3) is lacking from exact analytical solutions, 
a physical insight into the propagation dynamics of the pump 
beam can be obtained by using a semi analytical approach 
known as variational theory [9, 10]. This method replaces a 
partial differential equation with a set of coupled ordinary dif-
ferential equations for the coefficients of an ansatz describing 
the full solution of wave Eq. (3). According to this method, 
Eq. (3) is a variational problem for action principle based on 
Lagrangian density

In the present analysis, we assume A0(r, z) takes the form 
of the function given by [11]

where the parameter f (z)  is currently undetermined and 
upon multiplication with initial beam width r

0
 it gives the 

waist size of the laser beam at particular location inside the 
medium. Hence, the parameter f (z) can be referred to as 
dimensionless beam width parameter. The phenomenologi-
cal parameter q is related to the deviation of irradiance, over 
the cross section of the beam, from ideal Gaussian profile. 
For q = 0 the beam profile is pure flat-top profile with an 
infinite plane wavefront and for  q → ∞ i.e.,

the beam profile is that of a TEM
00

 Gaussian beam. For  
q > 0 as the value of q increases, the effect on the beam 
waist profile is to increase the rate of change in intensity in 
the off axial regions of the cross section of the laser beam 
as shown in Fig. 7.

Substituting the trial function (Eq. 5) in Lagrangian den-
sity and integrating over  r  we get reduced Lagrangian as 
L = ∫ ∞

0
Lrdr . The corresponding Euler–Lagrange equation

gives the following ordinary differential equation describing 
the dynamical variations of beam width with propagation 
distance.

(4)

L = i

(
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Fig. 5  Restoring force on electron cloud of an atom/molecule in a 
crystal lattice

Fig. 6  Tensor nature of nonlinear susceptibility
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where

Thus, it follows from Eq. (7) that the problem of solving 
a partial differential equation i.e., NSWE (Eq.  3) has 
reduced to that of solving an ordinary differential equation. 
Although this reduced equation is also lacking an exact 
analytical solution due to its non integrability, its approxi-
mate solution can be easily obtained with the help of sim-
ple numerical techniques. In solving Eq. (7) it has been 
assumed that initially the beam is collimated i.e., it satis-
fies the boundary conditions  f = 1 and  df

d�
= 0 at � = 0.

Third harmonic generation

The amplitude A
3
 of the third harmonic component obeys 

the equation

where

(7)
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and

Using Eqs. (5) and (9) in Eq. (8), we get

Hence, the conversion efficiency �
3
 of third harmonic can 

be written as

Equation (11) has been solved numerically in associa-
tion with Eq. (7) to see how conversion efficiency of the 
harmonic power evolves with longitudinal distance.

Discussion

In the present analysis, solution of Eqs. (7) and (11) has been 
obtained with the help of Runge Kutta fourth-order method 
for the following set of laser and medium parameters:

Δk = 3k
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− k

3
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Fig. 7  Intensity profile of q-Gaussian laser beam

Fig. 8  Effect of deviation parameter q on evolution of beam width of 
the laser beam
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The corresponding evolutions of the beam width and 
conversion efficiency of THG are shown in Figs. 8 and 9, 
respectively. Breather like behavior i.e., harmonic vari-
ations in the beam width with distance of propagation 
through the medium, can be clearly seen from the plots in 
Fig. 8. These harmonic variations of the beam width can 
be explained by examining the role and origin of various 
terms contained in Eq. (7). The first term on right hand 
side (R.H.S), which is proportional to f −3 , is the spatial 
dispersive term, that models the spreading of the laser 
beam in transverse directions occurring as a consequence 
of diffraction divergence. The second term which is pro-
portional to f −n arises due to the optical nonlinearity of the 
medium resulting as a consequence of anharmonic motion 
of the atomic dipoles under the field of laser beam. The 
order of anharmonicity is described by higher order sus-
ceptibilities � (n) . Depending on the sign of  � (n) the second 
term can oppose or favor the effect of first term. In the 
present investigation, we have solved Eq. (7) for  � (3) and  
�
(5)  by taking  � (3) to be positive and  � (5)  to be nega-

tive. Thus, the first term along with  � (5) term oppose the 
effect of � (3) term. The winning term ultimately decide 
the behavior of the laser beam i.e., whether the beam will 
converge or diverge. Thus, there exists a critical value of 
beam intensity above which the beam will converge. In the 
present investigation the initial beam intensity has been 
taken greater than the critical intensity i.e., why the spot 
size of the laser beam is converging initially. As the beam 
width decreases, the � (5) $ term start dominating � (3) term. 
Also, reduction in the spot size of the laser beam results in 
increase in its transverse momentum spread via position 
momentum uncertainty, which in turn leads to increase 
in its diffraction effect. Hence, there starts a competition 
between self-focusing due to � (3) $ nonlinearity and self 

defocusing due to natural diffraction and  � (5)  nonlinear-
ity. This competition goes on till the laser beam attains 
minimum possible spot size. There after diffraction effects 
become dominant and hence the beam width of the laser 
beam again starts increasing. As the beam width of the 
laser beam starts increasing, the competition between dif-
fraction broadening and nonlinear refraction starts again. 
Now, this competition lasts till maximum value of  f  is 
obtained. These processes go on repeating themselves and 
thus give breather like behavior to the spot size of the 
laser beam.

Reduction in focusing of the laser beam with increase 
in the value of q has also been observed from Fig. 6. The 
reason behind this effect is that for laser beams with higher 
value of q most of the intensity is concentrated in a narrow 
region around the axis of the beam. Hence, these beams get 
a get a very less contribution from the off axial part in order 
to produce nonlinearity in the medium. As the phenomenon 
of self-focusing is a homeostasis of nonlinear refraction of 
the laser beam due to optical nonlinearity of the medium, 
increase in the value of q reduces the extent of self focusing.

From the plots in Fig. 9 it can be clearly seen that the 
normalized power of the harmonic radiation is a monotoni-
cally increasing function of distance of propagation show-
ing periodical step like behavior. Each step occurs at the 
position of the minimum beam width. This is because as 
the pump beam gets self-focused, its intensity increases and 
consequently the oscillation amplitude of the atomic dipoles 
also increases. These higher amplitude atomic oscillators 
emit radiation of relatively higher intensity. Hence, there is 
monotonic increase in the power of harmonic radiations with 
distance of propagation. The step like behavior of the power 
of harmonic radiation at the positions of the focal spots of 
the pump beam are due to the fact that being the regions of 
highest intensity, the amplitude of the atomic oscillators is 
maximum at the focal spots of the pump. Hence, after attain-
ing its maximum value the harmonic power moves towards 
its next possible higher value at next focal spot. These transi-
tions of harmonic power from one maximum value to next 
maximum value give it a step like behavior, each step occur-
ring at the position of minimum beam width of the pump.

Reduction in the efficiency  �
3
 of conversion to third har-

monics with increase in the value of  q can be seen from the 
plots in Fig. 9. The underlying physics behind this is the one 
to one correspondence between the conversion to higher har-
monics and the degree of self-focusing of the pump beam. 
Larger is the extent of focusing larger will be the efficiency 
of the conversion process and vice versa. Hence, decrease 
in the focusing of laser beam with increase in the value of  
q reduces the efficiency of conversion to third harmonics.

Fig. 9  Effect of deviation parameter q on conversion efficiency of 
THG
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Conclusions

In conclusion, we have investigated the effect of self-focus-
ing of a laser beam on its THG in cubic quintic optical non-
linear media. From the results of present investigation it can 
be concluded that irradiance profile of the laser beam plays a 
significant role in determining its propagation characteristics 
as well as the conversion efficiency of THG in nonlinear 
media. As the irradiance profile of the laser beam converges 
toward Gaussian profile, there is a significant decrease in 
the conversion efficiency of THG. Thus, for efficient THG 
laser beams with expanded wings of the irradiance profile 
are more suitable.

The results of present investigation may serve as a guide 
for the experimentalists working in the area of nonlinear 
optics and light matter interactions.
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Introduction

The invention of the laser [1] is the most towering achieve-

ment in the long history of light. It brought an extraordinary 

technological leap, which has since paved the way for a star-

tling new era in optical science and technology. For the first 

time, man got a remarkable tool for direct generation and 

manipulation of coherent light. Laser brought same revolu-

tion to optics that transistor brought to electronics and cyclo-

tron brought to nuclear physics. The distinctive qualities of 

laser derive from its coherence properties, which result in 

a beam of light with a well-defined optical phase both in 

space and time. This prescribed phase generally confines the 

wavelength and frequency of the laser light to a restricted 

range, so that the beam exhibits a narrow frequency spec-

trum. Another unique property of laser light is its direction-

ality, which means that the beam can propagate over great 

distances without significant spreading and can be readily 

manipulated using conventional optical elements. The phase 

coherence and directionality of the laser make it possible to 

create extremely large optical powers and focused intensi-

ties that cannot be obtained from incoherent light emitters. 

These characteristics also allow accurate transfer of infor-

mation [2], precise calibration of time [3, 4], and measure-

ments of many physical constants [5, 6], among numerous 

other applications, using laser light. Lasers are now standard 

components of such commonplace objects as compact-disk 

players and printers. The everyday presence of lasers does 

not mean, however, that they have been reduced to perform-

ing only pedestrian tasks. Higher-end applications like laser 

surgery [7], laser-driven particle accelerators [8, 9], inertial 

confinement fusion [10], etc., are also abound.

Success is never without limitations, and laser is also not 

an exception. By the virtue of its unique coherence proper-

ties, laser light contains only a confined band of frequencies 
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determined by the energy gap in the laser material. In this 

regard, the laser can be viewed as a light source with limited 

spectral versatility. It is possible to develop tunable lasers 

with more extended spectral emission using materials with 

broadened energy levels or energy bands). However, the 

maximum spectral coverage available to the most prominent 

tunable lasers (e.g., Ti:sapphire) is still limited to at best 

300–400 nm. In addition, the restricted availability of suit-

able laser materials has confined the wavelength coverage of 

existing tunable lasers mainly to the visible and near-infrared 

spectrum. These limitations have left substantial portions of 

the optical spectrum inaccessible to lasers, and alternative 

methods for the generation of coherent light in these regions 

have had to be devised.

One of the most effective techniques to overcome the 

spectral limitations of lasers is to exploit nonlinear optics. 

The potential of nonlinear processes for the generation of 

tunable coherent radiation was recognized soon after the 

invention of the laser [11]. Nonlinear optical techniques are 

based on a fundamentally different principle from lasers. 

While the process of light emission in a laser is a direct 

result of the transitions between the energy levels in the laser 

gain medium, nonlinear optical processes rely on the alterna-

tive mechanism for light generation, namely electric dipole 

oscillations [12].

When light is incident on matter, the bound electrons 

vibrate in the electromagnetic field. While moving under the 

electromagnetic force, the electrons generate a synchronous 

polarization field, which interferes with the original field. 

At low amplitude, this generated field is proportional to the 

exciting one, and the interference between the driving field 

and the generated one is the origin of the linear properties of 

light in matter, such as those described by the optical index 

of refraction. On the other hand, when the input electric 

field is large, electron displacement becomes nonlinear at 

the higher field strengths. This is the regime of nonlinear 

optics. The exact form of nonlinear response depends on 

crystallographic structure of the material (Figs. 1, 2).

Fig. 1  Nonlinear response of noncentrosymmetric crystal

Fig. 2  Nonlinear polarization in symmetrical crystals
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However, in either case, the electrons oscillate not only 

at the input frequency but also over an infinite range of fre-

quencies, above and below the input frequency that can be 

seen from the Fourier expansion of the electron displace-

ment. The resulting light emission from the oscillating elec-

trons is thus also over an infinite band of frequencies. If the 

potential that binds the electrons in the material is asymmet-

ric in space, the electron orbits will be distorted relative to 

the symmetric case, that is, elongated in the direction of the 

more confining part of the potential. The distorted electron 

orbits will then generate harmonic polarization waves. For 

instance, a wave at radial frequency ω will generate a wave 

at frequency 2ω (Fig. 3). This is called second-harmonic 

generation (SHG) and is widely used in the field of nonlinear 

optics.

A concise and clear description of the physical mecha-

nism of SHG can also be given on the basis of quantum 

theory of radiations which is based on quantum electro-

dynamics. The main advantage of using this theory is that 

whenever there is an exchange of energy and momentum 

either among different components of optical fields or 

between the optical field and the medium, this theory can 

reveal the coherent wave property of the optical field as well 

as the quantum nature of the field. The starting point of this 

theory is to consider the optical field and the molecules of 

the nonlinear medium as a combined and quantized system. 

The interaction between the optical field and the molecule 

results in (i) transition of the molecule among its different 

energy states and (ii) a simultaneous change of distribution 

of photons in different modes (photon states). In order to 

give a rigorous and complete physical description for these 

processes, the key concept of intermediate state must be 

introduced, which is a quantum state characterizing the 

whole system involving both optical fields and the molecule. 

In such an intermediate state of the whole system, the photon 

number (degeneracy) in a mode has changed by + 1 or − 1, 

while the molecule has left its original state (mostly ground 

state); however, at this moment, the molecule is not certainly 

located in any specific excited state, but correlated with all 

possible excited states with a certain occupying probability 

for each. In this case, it is convenient to introduce a vir-

tual energy level in the energy diagram to represent such an 

intermediate state. In the intermediate state represented by 

a virtual state level, the energy range of all molecular eigen 

states that may be occupied by an excited molecule is nearly 

unlimited; according to the uncertainty principle, the staying 

time of this molecule in that intermediate state is infinitely 

short. Relying on the concept of intermediate state and its 

representation of a virtual energy level, many nonlinear opti-

cal effects can be interpreted very clearly.

As an example, the schematic energy-level diagram 

describing SHG is shown in Fig.  4. In this case, the 

Fig. 3  Second-harmonic gen-

eration in noncentrosymmetric 

media
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elementary process of SHG occurs via multiple quan-

tum transitions or multiple steps. In the first step, there 

is an annihilation of one photon from the fundamental 

light field, while a molecule of the medium left its initial 

(ground) state to an intermediate state; in the second step, 

there is the annihilation of another fundamental photon, 

while the excited molecule is situated in another inter-

mediate state; in the final step, this excited molecule is 

returning to its initial state, while there is the creation of a 

new photon of doubled frequency. Since the staying time 

of the molecule in each intermediate state is extremely 

short (near the response time of electron-cloud distortion), 

the above-mentioned three steps actually occur instanta-

neously and simultaneously. Here, we have to visualize 

that the elementary SHG process undergoes three quan-

tum transitions via two intermediate states, because in the 

quantum theory of radiation for each quantum transition of 

the whole system, the photon number in a given mode can 

only change either by − 1 (i.e., annihilation of a photon) 

or + 1 (i.e., creation of a photon). This rule holds for any 

types of optical processes involving emission, absorption, 

or molecular scattering of light. We should keep in mind 

that for all those phenomena (such as nonlinear frequency 

mixing, Raman scattering, and multi-photon absorption), 

the observable elementary process is actually an instanta-

neous single event even though which may undergo mul-

tiple quantum transitions via one or multiple intermedi-

ate states. With such an understanding, for instance, the 

elementary process of SHG can also be simply described 

as the annihilation of two fundamental photons and the 

simultaneous creation of one second-harmonic photon.

Similarly, if the potential that binds the electrons in the 

material is symmetric in space, then the wave at frequency 

ω will generate a new wave at frequency 3ω (Fig. 5).

If two waves of frequencies ω1 and ω2 propagate 

simultaneously through a nonlinear medium, then it 

may result in the generation of new waves at frequencies 

2�1, 2�2,�1 + �2 ⋅ �1 − �2 (Fig. 6).

In case of plasmas, the role of polarization waves is 

played by the propagating electron plasma waves EPWs. 

Thus, plasmas can also lead to the generation of higher har-

monics of the incident waves through the process of non-

linear frequency mixing. However, plasmas offer several 

advantages over the other nonlinear media for frequency 

mixing. The major advantage is that there is no upper thresh-

old on the power of radiation that can be sent through them. 

Plasmas by definition are already ionized, and thus, they 

have infinite immunity against ionization-induced damages. 

In contrast to this, the best-known glasses get damaged by 

ionization only at 10 W/cm2. Thus, second harmonics of 

any intensity can be produced with the help of plasmas as a 

nonlinear medium [13–15].

Most laser beams have a Gaussian irradiance profile, 

although it can be beneficial to use a non-Gaussian beam 

in certain applications [16, 17]. The irradiance cross sec-

tion of Gaussian beams decreases symmetrically with 

increasing distance from the center. Gaussian laser pro-

files have several disadvantages, such as the low-intensity 

portions on either side of the usable central region of the 

beam, known as “wings.” These wings typically contain 

energy that is wasted because it is at a lower intensity than 

the threshold required for the given application, whether it 

is materials processing, laser surgery, laser-driven fusion 

or another application where an intensity above a given 

value is needed. Thus, due to their expanded wings of 

the irradiance profile, a new class of laser beams known 

as q-Gaussian laser beams has gained a significant inter-

est of researchers working in the area of laser–plasma 

Fig. 4  QED description of SHG
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interactions [18, 19]. These beams contain a significant 

amount of energy outside the full width half maximum 

of their irradiance profile. The literature review reveals 

the fact that most of the earlier investigations on SHG 

of intense laser beams in plasmas have been reported 

for Gaussian laser beams. Thus, this article aims to give 

first theoretical investigation on SHG of q-Gaussian laser 

beams in plasma by nonlinear frequency mixing including 

the effect of cross-focusing of the laser beams.

Fig. 5  Third harmonic genera-

tion in centrosymmetric media

Fig. 6  Frequency mixing in nonlinear media
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Relativistic nonlinearity of plasma

Consider the propagation of two coaxial laser beams with 

electric field vectors

Through a plasma with equilibrium electron density n0. 

Here, kj, ωj are the wave numbers and angular frequencies 

of the fields of the laser beams, and Aj(r, z) are their slowly 

varying complex amplitudes. The amplitude structure over 

the cross sections of the q-Gaussian laser beams is given 

by [19]

Here, the phenomenological constant qj is related to devia-

tion of amplitude structure over the cross section of laser 

beams form ideal Gaussian profile. Laser beams with lower 

values of qj are characterized by expanded wings of the 

intensity distribution in comparison to the ideal Gaussian 

distribution. Hence, the parameter qj is also termed as devia-

tion parameter. As the value of qj increases, the amplitude 

structure over the cross section of the laser beams converges 

toward the ideal Gaussian profile. The functions fj(z) are 

the key parameters of interest that upon multiplication with 

initial beam radius rj give the instantaneous beam widths of 

the laser beams. Hence, fj is called as beam width parameter.

The dielectric function of a plasma with electron den-

sity ne for an electromagnetic beam with frequency ωj is 

given by

where

is the natural frequency of oscillations of plasma electrons, 

i.e., plasma frequency. When under the effect of intense 

fields of the incident laser beams the quiver velocity of 

plasma electrons becomes comparable to that of speed of 

light in vacuum; then, the effective mass me of electron in 

Eq. (4) needs to be replaced by m0γ, where γ is the relativ-

istic Lorentz factor, and m0 is the rest mass of electron. Fol-

lowing Akhiezer and Polovin [20], the relativistic Lorentz 

factor can be related to the total intensity of the laser beams 

as

(1)Ej(r, z, t) = Aj(r, z)e�(kjz−�jt)ex, j = 1, 2
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nonlinearity.

Since, the effective dielectric function of plasma depends 

on effective mass of plasma electrons through the plasma fre-

quency (Eq. 4). Hence, intensity dependence of electron mass 

in turn affects the optical properties of plasma in a nonlinear 

manner. The resulting intensity dependence of dielectric func-

tion of plasma for q-Gaussian laser beams can be written as

where

is the plasma frequency in the absence of laser beams. From 

Eq. (6), it can be seen that the dielectric function of plasma 

is a function of intensities of both the laser beams. Hence, 

during their simultaneous propagation through plasma, the 

two laser beams get nonlinearly coupled with each other. 

Equation (6) can be written as

where

are the linear parts of dielectric function and

are the nonlinear parts of dielectric function.

Cross‑focusing of laser beams

The evolution of beam envelope of an optical beam through 

a nonlinear medium is governed by the wave equation

As Eq. (10) is a nonlinear partial differential equation, it 

does not possess any closed-form exact solution. Thus, in 
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order to have physical insight into the propagation dynam-

ics of the laser beams, we have used a semi-analytical tech-

nique known as variational theory [21, 22] to solve Eq. (10). 

According to variational method, Eq. (10) is a variational 

problem for action principle based on Lagrangian density

Substituting the trial function for q-Gaussian beam profile 

in Lagrangian density and integrating over the entire cross 

section of the laser beam we get the reduced Lagrangian as 

L = ∫ £d
2
r . The corresponding Euler–Lagrange equations

give

Using Eq. (9) in (13), the set of coupled differential equa-

tions for beam widths of the two laser beams are obtained
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z

k
1
r2

1

 is the dimensionless distance of propagation, 

and

(11)

= i

(

A1

𝜕A∗

1

𝜕z
− A

∗

1

𝜕A1

𝜕z

)

+ i

(

A2

𝜕A∗

2

𝜕z
− A

∗

2

𝜕A2

𝜕z

)

+||∇⊥
A1

|
|
2
+ ||∇⊥

A1
|
|
2
−

𝜔
2

1

c2

A1A∗

1

∫ Φ
(
A1A

∗

1
, A2A

∗

2

)
d
(
A1A

∗

1

)

−
𝜔

2

2

c2

A2A∗

2

∫ Φ
(
A1A

∗

1
, A2A

∗

2

)
d
(
A2A

∗

2

)

(12)
d

dz

⎛⎜⎜⎜⎝
dL

�

�
�fj

�z

�
⎞⎟⎟⎟⎠
−

�L

�fj
= 0

(13)

d
2fj

d�2
+

1

fj

(

dfj

d�

)2

=
1

k2

j
r4

j
f 3

j

(

1 −
1

qj

)(

1 −
1

qj

)

(

1 +
1

qj

)

+

(

1 −
2

qj

)

r2

j
�

0jI0j
∫ r2AjA

∗

j

��j

�r
d

2r

(14)

d
2f

1

d�2
+

1

f
1

(

df
1

d�

)2

=

(

1 −
1

q
1

)(

1 −
1

q
1

)

(

1 +
1

q
1

)

1

f 3

1

− 2

(

�p0
r

1

c

)2(

1 −
1

q
1

)(

1 −
2

q
1

)

J
1

(15)

d
2f

2

d�2
+

1

f
2

(

df
2

d�

)2

=

(

r
1

r
2

)4(

�
1

�
2

)2(

�
01

�
02

)

(

1 −
1

q
2

)(

1 −
1

q
2

)

(

1 +
1

q
2

)

1

f 3

2

− 2

(

�p0
r

1

c

)2(

1 −
1

q
2

)(

1 −
2

q
2

)

J
2

Equations (14) and (15) are the coupled nonlinear differen-

tial equations governing the cross-focusing of two coaxial 

q-Gaussian laser beams in collisionless plasma. For initially 

plane wavefronts, these equations are subjected to boundary 

conditions fj = 1 and 
dfj

d�
= 0 at ξ = 0.

To analyze the effect of deviation of intensity distribution 

of laser beams from Gaussian distribution and plasma den-

sity on cross-focusing of the laser beams eqs.(14)-(15) have 

been solved for following set of laser-plasma parameters: 

�1 = �2 = 1.758 × 1014 rad s−1, �1 = �2 = 10.7 μm
(
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and for different values of q1 and q2 viz., q1 = q2 = (3, 4,∞).

Figure 7 illustrates the effect of deviation parameter q1 

of beam1 on focusing/defocusing of the two laser beams. It 

can be seen that during the propagation of the laser beams 

through plasma, their beam widths vary harmonically with 

distance. This behavior of the beam widths of the laser 

beams can be explained by examining the role and origin of 

various terms contained in Eqs. (14) and (15).

The first terms on the right-hand sides (R.H.S) of 

these equations that vary inversely with the cube of their 

beam widths are the spatial dispersive terms that model 

the spreading of the laser beams in transverse directions 

occurring as consequence of light’s wave nature of diffrac-

tion. The second terms on the R.H.S of these equations 

that have complex dependence on beam widths f1 and f2 of 

the two laser beams arise as a consequence of relativistic 

nonlinearity of plasma and nonlinear coupling the laser 

beams with each other. It can be seen that although two 
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copropagating laser beams through vacuum do not inter-

act with each other, but during their propagation through 

plasma medium, they get coupled with each other. As a 

consequence of the relativistic nonlinearity of plasma, 

the resulting nonlinear refraction of the laser beams tends 

to counterbalance the effect of diffraction by inducing a 

convex lens-like structure into the plasma. Thus, during 

the propagation of the laser beams through plasma, there 

starts a competition between the two phenomena of dif-

fraction and nonlinear refraction. The winning phenom-

enon ultimately decides the behavior of the laser beams, 

i.e., whether the beams will converge or diverge. Thus, 

there exists a critical value of the total beam intensity 

above which the beams will converge.

In the present investigation, the initial beam intensity has 

been taken to be greater than the critical intensity, i.e., why 

the spot sizes of the two laser beams are converging initially. 

As the beam widths of the laser beams get reduced, their 

intensity increases. When the intensity of the laser beams 

become too high, the mass of plasma electrons and thus 

the optical nonlinearity of plasma get saturated. Thus, the 

laser beams propagate as if they are propagating through 

a linear medium. Hence, after attaining minimum possi-

ble value, the beam widths of the two laser beams bounce 

back to their initial values. As the beam widths of the laser 

beams start increasing, the competition between diffraction 

and nonlinear refraction starts again. Now, the competition 

lasts till maximum values of f1 and  f2 are obtained. These 

processes go on repeating themselves and thus give breather-

like behavior to the spot sizes of the laser beams.

The plots in Fig. 7 depict that increase in the value of q1 

leads to decrease in the extent of self-focusing of first laser 

beam. This is due to the fact that as the value of q1 increases 

toward higher values, the intensity of the first laser beam 

shifts toward the axial region of the wavefront. As a result, 

laser beams with higher q value get lesser contribution from 

the off axial rays toward nonlinear refraction. As nonlinear 

refraction of the laser beam is a homeostasis for self-focus-

ing, increase in the value of q1 results in reduced focusing of 

beam 1. It is also observed from Fig. 7 that the laser beams 

with higher q values possess faster focusing. The underlying 

physics behind this fact is the slower-focusing character of 

the off-axial rays.

The plots in Fig. 7 also depict that increase in the value of 

q1 leads to increase in the extent of self-focusing of the sec-

ond laser beam. This is due to the fact that due to nonlinear 

coupling between the two laser beams, the increase in value 

of q1 favors the nonlinear refraction of beam2.

Figure 8 depicts the effect of deviation parameter q2 of 

beam 2 on evolution of the beam widths of the two laser 

beams. It can be seen that increase in value of q2 decreases 

the self-focusing of beam 2 and increases that of beam 1.

Excitation of electron plasma wave (EPW)

EPW that results in the generation of second-harmonics 

radiations can be excited into the plasma due to remarkable 

properties of plasma. Plasma as a whole possesses quasi-

neutrality, i.e., it contains almost equal number of free 

electrons and ions. But, as the electrons and net positively 

charged ions are separated, a disturbance can create regions 

of net negative and regions of positive charges acting like the 

plates of a charged parallel plate capacitor. Such an uneven 

Fig. 7  Variation of beam width parameters f1 and f2 of laser beams with distance of propagation in plasma for different values of q1 and at fixed 

values of q2 = 3, 
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distribution of charges results in an electric field running 

from positive to negative regions. This electric field pulls the 

electrons and ions toward each other with equal forces. Ions 

being much heavier than the electrons remain at rest and 

the electrons move toward the positive regions. As the elec-

trons move toward the ions, they steadily gain velocity and 

momentum like a pendulum moving toward its mean posi-

tion from an extreme position. Due to this gain in momen-

tum, the electrons overshoot their equilibrium positions 

resulting in reversing the direction of electric field. Now, 

the reversed electric field opposes the motion of electrons 

and slows them down and then pulling them back again. 

The process repeats itself, establishing electron oscillations. 

In the presence of thermal velocities, these electrons oscil-

lations form a longitudinal wave of positive and negative 

regions traveling through the plasma (Fig. 9).

The electron oscillators can be set in motion by intense 

laser beams. As the laser beams enter the plasma region, 

they exert pressure on plasma electrons, and hence, the 

plasma electrons move out of the way. As the laser beams 

exit, leaving a region deficient of electrons, the plasma 

electrons rush back to establish equilibrium. This move-

ment of plasma electrons initiates the oscillations and 

results in a plasma wave.

As the two laser beams with different frequencies 

are propagating simultaneously through the plasma, the 

plasma oscillations of the plasma electrons under the fields 

of the two laser beams also contain a frequency component 

equal to the sum of the frequencies of the two laser beams. 

The electron density perturbation n′ associated with the 

excited EPW evolves according to the wave equation

Taking

(16)
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Fig. 8  Variation of beam width parameters f1 and f2 of the laser beams with distance of propagation in plasma for different values of q2 and at 

fixed values of q1 = 3, 
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Fig. 9  Electron plasma wave
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where � = �
1
+ �

2
 and k = k

1
+ k

2
 , we get the amplitude of 

density perturbation associated with plasma wave

Second‑harmonic generation

The density perturbation associated with excited EPW results 

in a nonlinear current density at frequency � = �
1
+ �

1
 that 

acts as source for a new radiation at frequency ω, for ω1 = ω2, 

this new radiation will be having frequency twice that of the 

pump beams and is thus called as second-harmonic radiation 

(Fig. 10).

e generated current density is given by

The electric field of the resulting harmonic radiation evolves 

according to the wave equation

This equation gives the magnitude of electric field of sec-

ond-harmonic radiation as

Defining the normalized power of second-harmonic radia-

tion as

We get

Equation (22) gives the normalized power of the second-

harmonic radiation produced by the two laser beams while 

propagating through the plasma. Equation 22 has been 

solved numerically in association with the beam width 

eqs.14 and 15, and the corresponding evolutions of the 
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normalized power with distance of propagation for differ-

ent values of qj are depicted in Fig. 11. It has been observed 

that the power of second-harmonic radiation is a monotoni-

cally increasing function of propagation, showing step like 

behavior. Each step occurs at the position of the minimum 

beam width of the two laser beams. This is because as the 

pump beams get self-focused their intensity increases and 

consequently the oscillation amplitude of the plasma elec-

trons also increases which in turn increases the amplitude of 

the generated EPW. Since, the density perturbation associ-

ated with EPW acts as source for nonlinear current density 

for second-harmonic radiation, there is monotonic increase 

in the second-harmonic power with distance.

To understand the physics of SHG in plasmas consider 

the simultaneous propagation of two intense laser beams 

through a plasma whose density is rippled along the direc-

tion of propagation of the two laser beams. These density 

ripples of the plasma are due to the propagation of an elec-

tron plasma wave through the plasma. In the presence of 

the laser beams, the plasma electrons start oscillating under 

the effect of the field of the laser beams and thus generate a 

transverse electric current JT. Under proper matching of the 

wave vectors and frequencies, the transverse current gener-

ates a second-harmonic wave. The generated harmonic wave 

then beats with the incident laser beams and thus produces 

variations in wave pressure. These variations in wave pres-

sure lead to migration of plasma electrons from the regions 

of high pressure to the regions of low pressure. The resulting 

density perturbation reinforces the initial density fluctua-

tions associated with electron plasma wave, i.e., the plasma 

wave gets amplified. The presence of this feedback loop 

(Fig. 12) leads to the amplification of the harmonic wave 

with distance of propagation.

The step like behavior of the power of second-harmonic 

radiation at the positions of the minimum beam width of the 

pump beams is owing to the fact that these are the regions of 

highest intensity, and hence, the current density for second-

harmonic radiation is maximum there. Hence, after attaining 

its maximum value the power of second-harmonic radiation 

moves toward its next possible higher value at next focal 

spot. These transitions of second-harmonic power from one 

maximum value to next maximum value give it a step like 

behavior.

Reduction in the power PT of second-harmonic radia-

tion with increase in the value of deviation parameter q1 

of beam 1 has also been observed from the plots in Fig. 11. 

The underlying physics behind this is the one-to-one 
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Fig. 10  Second-harmonic generation in plasma

Fig. 11  Variation of normalized power PT of second-harmonic radiation with distance of propagation in plasma for different values of deviation 

parameters of the laser beams and at fixed values of q2 = 3, �1E2
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Fig. 12  Feedback loop for amplification of second-harmonic radiation
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correspondence between the power of second-harmonic 

radiation and the degree of self-focusing of the pump 

beams. As increase in the value of q1 reduces the extent 

of focusing of the pump beam 1 (beam with higher initial 

intensity) and increases the focusing of beam 2. However, 

in producing second-harmonic radiation, dominant role is 

played by beam with higher initial intensity. Hence, there 

is corresponding decrease in the power of second-harmonic 

radiation with increase in q1. Same is the reason behind the 

observed increase in the power of second-harmonic radia-

tion with increase in the value of deviation parameter q2 of 

beam 2 (Fig. 11).

Conclusions

In conclusion, we have investigated the effect of cross-

focusing of intense laser beams on second-harmonic gen-

eration in plasma under the effect of relativistic nonlinearity. 

Effect of the deviation of amplitude structure of laser beams 

from ideal Gaussian profile has been incorporated through 

q-Gaussian distribution. It has been observed that devia-

tion parameters of the laser beams significantly affect the 

cross-focusing and hence the power of generated second-

harmonic radiation. As the amplitude structure of laser beam 

with higher initial intensity (i.e., pump beam) converges 

toward the ideal Gaussian profile, there is decrease in the 

power of generated second-harmonic radiation. However, 

in case, the amplitude structure of laser beam with lower 

initial intensity (i.e., probe beam) converges toward the ideal 

Gaussian profile, and there is increase in the power of gen-

erated second-harmonic radiation. Thus, by controlling the 

deviation parameters of the pump and probe beams, one can 

optimize the power of second-harmonic radiation for a given 

set of plasma parameters. The results of present study may 

be helpful for the experimentalists working in the field of 

laser–plasma interactions.
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Introduction

The invention of the laser [1] is the most towering achieve-

ment in the long history of light. It brought an extraordinary 

technological leap, which has since paved the way for a star-

tling new era in optical science and technology. For the first 

time, man got a remarkable tool for direct generation and 

manipulation of coherent light. Laser brought same revolu-

tion to optics that transistor brought to electronics and cyclo-

tron brought to nuclear physics. The distinctive qualities of 

laser derive from its coherence properties, which result in 

a beam of light with a well-defined optical phase both in 

space and time. This prescribed phase generally confines the 

wavelength and frequency of the laser light to a restricted 

range, so that the beam exhibits a narrow frequency spec-

trum. Another unique property of laser light is its direction-

ality, which means that the beam can propagate over great 

distances without significant spreading and can be readily 

manipulated using conventional optical elements. The phase 

coherence and directionality of the laser make it possible to 

create extremely large optical powers and focused intensi-

ties that cannot be obtained from incoherent light emitters. 

These characteristics also allow accurate transfer of infor-

mation [2], precise calibration of time [3, 4], and measure-

ments of many physical constants [5, 6], among numerous 

other applications, using laser light. Lasers are now standard 

components of such commonplace objects as compact-disk 

players and printers. The everyday presence of lasers does 

not mean, however, that they have been reduced to perform-

ing only pedestrian tasks. Higher-end applications like laser 

surgery [7], laser-driven particle accelerators [8, 9], inertial 

confinement fusion [10], etc., are also abound.

Success is never without limitations, and laser is also not 

an exception. By the virtue of its unique coherence proper-

ties, laser light contains only a confined band of frequencies 

Abstract A scheme for second-harmonic generation 

(SHG) of a pair of q-Gaussian laser beams interacting non-

linearly with underdense plasma has been proposed. Due to 

the relativistic increase in electron mass under the intense 

fields of the laser beam, the resulting optical nonlinearity of 

plasma leads cross-focusing of the laser beams. The resulting 

nonlinear coupling between the two laser beams makes the 

oscillations of plasma electrons to contain a frequency com-

ponent equal to the sum of frequencies of the pump beams. 

This results in a nonlinear current density at frequency equal 

to the sum of frequencies of the pump beams. If the frequen-

cies of the pump beams are equal, then the resulting nonlin-

ear current generates a new radiation at frequency twice the 

frequencies of the pump beams— a phenomenon known as 

SHG. Starting from nonlinear Schrodinger wave equation a 

set of coupled differential equations governing the evolution 

of beam widths of the laser beams and power of generated 

second-harmonic radiation with longitudinal distance has 

been obtained with the help of variational theory. The equa-

tions so obtained have been solved numerically to envision 

the effect of laser as well as plasma parameters on the power 

of generated second-harmonic radiation.
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determined by the energy gap in the laser material. In this 

regard, the laser can be viewed as a light source with limited 

spectral versatility. It is possible to develop tunable lasers 

with more extended spectral emission using materials with 

broadened energy levels or energy bands). However, the 

maximum spectral coverage available to the most prominent 

tunable lasers (e.g., Ti:sapphire) is still limited to at best 

300–400 nm. In addition, the restricted availability of suit-

able laser materials has confined the wavelength coverage of 

existing tunable lasers mainly to the visible and near-infrared 

spectrum. These limitations have left substantial portions of 

the optical spectrum inaccessible to lasers, and alternative 

methods for the generation of coherent light in these regions 

have had to be devised.

One of the most effective techniques to overcome the 

spectral limitations of lasers is to exploit nonlinear optics. 

The potential of nonlinear processes for the generation of 

tunable coherent radiation was recognized soon after the 

invention of the laser [11]. Nonlinear optical techniques are 

based on a fundamentally different principle from lasers. 

While the process of light emission in a laser is a direct 

result of the transitions between the energy levels in the laser 

gain medium, nonlinear optical processes rely on the alterna-

tive mechanism for light generation, namely electric dipole 

oscillations [12].

When light is incident on matter, the bound electrons 

vibrate in the electromagnetic field. While moving under the 

electromagnetic force, the electrons generate a synchronous 

polarization field, which interferes with the original field. 

At low amplitude, this generated field is proportional to the 

exciting one, and the interference between the driving field 

and the generated one is the origin of the linear properties of 

light in matter, such as those described by the optical index 

of refraction. On the other hand, when the input electric 

field is large, electron displacement becomes nonlinear at 

the higher field strengths. This is the regime of nonlinear 

optics. The exact form of nonlinear response depends on 

crystallographic structure of the material (Figs. 1, 2).

Fig. 1  Nonlinear response of noncentrosymmetric crystal

Fig. 2  Nonlinear polarization in symmetrical crystals
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However, in either case, the electrons oscillate not only 

at the input frequency but also over an infinite range of fre-

quencies, above and below the input frequency that can be 

seen from the Fourier expansion of the electron displace-

ment. The resulting light emission from the oscillating elec-

trons is thus also over an infinite band of frequencies. If the 

potential that binds the electrons in the material is asymmet-

ric in space, the electron orbits will be distorted relative to 

the symmetric case, that is, elongated in the direction of the 

more confining part of the potential. The distorted electron 

orbits will then generate harmonic polarization waves. For 

instance, a wave at radial frequency ω will generate a wave 

at frequency 2ω (Fig. 3). This is called second-harmonic 

generation (SHG) and is widely used in the field of nonlinear 

optics.

A concise and clear description of the physical mecha-

nism of SHG can also be given on the basis of quantum 

theory of radiations which is based on quantum electro-

dynamics. The main advantage of using this theory is that 

whenever there is an exchange of energy and momentum 

either among different components of optical fields or 

between the optical field and the medium, this theory can 

reveal the coherent wave property of the optical field as well 

as the quantum nature of the field. The starting point of this 

theory is to consider the optical field and the molecules of 

the nonlinear medium as a combined and quantized system. 

The interaction between the optical field and the molecule 

results in (i) transition of the molecule among its different 

energy states and (ii) a simultaneous change of distribution 

of photons in different modes (photon states). In order to 

give a rigorous and complete physical description for these 

processes, the key concept of intermediate state must be 

introduced, which is a quantum state characterizing the 

whole system involving both optical fields and the molecule. 

In such an intermediate state of the whole system, the photon 

number (degeneracy) in a mode has changed by + 1 or − 1, 

while the molecule has left its original state (mostly ground 

state); however, at this moment, the molecule is not certainly 

located in any specific excited state, but correlated with all 

possible excited states with a certain occupying probability 

for each. In this case, it is convenient to introduce a vir-

tual energy level in the energy diagram to represent such an 

intermediate state. In the intermediate state represented by 

a virtual state level, the energy range of all molecular eigen 

states that may be occupied by an excited molecule is nearly 

unlimited; according to the uncertainty principle, the staying 

time of this molecule in that intermediate state is infinitely 

short. Relying on the concept of intermediate state and its 

representation of a virtual energy level, many nonlinear opti-

cal effects can be interpreted very clearly.

As an example, the schematic energy-level diagram 

describing SHG is shown in Fig.  4. In this case, the 

Fig. 3  Second-harmonic gen-

eration in noncentrosymmetric 

media



 J Opt

1 3

elementary process of SHG occurs via multiple quan-

tum transitions or multiple steps. In the first step, there 

is an annihilation of one photon from the fundamental 

light field, while a molecule of the medium left its initial 

(ground) state to an intermediate state; in the second step, 

there is the annihilation of another fundamental photon, 

while the excited molecule is situated in another inter-

mediate state; in the final step, this excited molecule is 

returning to its initial state, while there is the creation of a 

new photon of doubled frequency. Since the staying time 

of the molecule in each intermediate state is extremely 

short (near the response time of electron-cloud distortion), 

the above-mentioned three steps actually occur instanta-

neously and simultaneously. Here, we have to visualize 

that the elementary SHG process undergoes three quan-

tum transitions via two intermediate states, because in the 

quantum theory of radiation for each quantum transition of 

the whole system, the photon number in a given mode can 

only change either by − 1 (i.e., annihilation of a photon) 

or + 1 (i.e., creation of a photon). This rule holds for any 

types of optical processes involving emission, absorption, 

or molecular scattering of light. We should keep in mind 

that for all those phenomena (such as nonlinear frequency 

mixing, Raman scattering, and multi-photon absorption), 

the observable elementary process is actually an instanta-

neous single event even though which may undergo mul-

tiple quantum transitions via one or multiple intermedi-

ate states. With such an understanding, for instance, the 

elementary process of SHG can also be simply described 

as the annihilation of two fundamental photons and the 

simultaneous creation of one second-harmonic photon.

Similarly, if the potential that binds the electrons in the 

material is symmetric in space, then the wave at frequency 

ω will generate a new wave at frequency 3ω (Fig. 5).

If two waves of frequencies ω1 and ω2 propagate 

simultaneously through a nonlinear medium, then it 

may result in the generation of new waves at frequencies 

2�1, 2�2,�1 + �2 ⋅ �1 − �2 (Fig. 6).

In case of plasmas, the role of polarization waves is 

played by the propagating electron plasma waves EPWs. 

Thus, plasmas can also lead to the generation of higher har-

monics of the incident waves through the process of non-

linear frequency mixing. However, plasmas offer several 

advantages over the other nonlinear media for frequency 

mixing. The major advantage is that there is no upper thresh-

old on the power of radiation that can be sent through them. 

Plasmas by definition are already ionized, and thus, they 

have infinite immunity against ionization-induced damages. 

In contrast to this, the best-known glasses get damaged by 

ionization only at 10 W/cm2. Thus, second harmonics of 

any intensity can be produced with the help of plasmas as a 

nonlinear medium [13–15].

Most laser beams have a Gaussian irradiance profile, 

although it can be beneficial to use a non-Gaussian beam 

in certain applications [16, 17]. The irradiance cross sec-

tion of Gaussian beams decreases symmetrically with 

increasing distance from the center. Gaussian laser pro-

files have several disadvantages, such as the low-intensity 

portions on either side of the usable central region of the 

beam, known as “wings.” These wings typically contain 

energy that is wasted because it is at a lower intensity than 

the threshold required for the given application, whether it 

is materials processing, laser surgery, laser-driven fusion 

or another application where an intensity above a given 

value is needed. Thus, due to their expanded wings of 

the irradiance profile, a new class of laser beams known 

as q-Gaussian laser beams has gained a significant inter-

est of researchers working in the area of laser–plasma 

Fig. 4  QED description of SHG



J Opt 

1 3

interactions [18, 19]. These beams contain a significant 

amount of energy outside the full width half maximum 

of their irradiance profile. The literature review reveals 

the fact that most of the earlier investigations on SHG 

of intense laser beams in plasmas have been reported 

for Gaussian laser beams. Thus, this article aims to give 

first theoretical investigation on SHG of q-Gaussian laser 

beams in plasma by nonlinear frequency mixing including 

the effect of cross-focusing of the laser beams.

Fig. 5  Third harmonic genera-

tion in centrosymmetric media

Fig. 6  Frequency mixing in nonlinear media
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Relativistic nonlinearity of plasma

Consider the propagation of two coaxial laser beams with 

electric field vectors

Through a plasma with equilibrium electron density n0. 

Here, kj, ωj are the wave numbers and angular frequencies 

of the fields of the laser beams, and Aj(r, z) are their slowly 

varying complex amplitudes. The amplitude structure over 

the cross sections of the q-Gaussian laser beams is given 

by [19]

Here, the phenomenological constant qj is related to devia-

tion of amplitude structure over the cross section of laser 

beams form ideal Gaussian profile. Laser beams with lower 

values of qj are characterized by expanded wings of the 

intensity distribution in comparison to the ideal Gaussian 

distribution. Hence, the parameter qj is also termed as devia-

tion parameter. As the value of qj increases, the amplitude 

structure over the cross section of the laser beams converges 

toward the ideal Gaussian profile. The functions fj(z) are 

the key parameters of interest that upon multiplication with 

initial beam radius rj give the instantaneous beam widths of 

the laser beams. Hence, fj is called as beam width parameter.

The dielectric function of a plasma with electron den-

sity ne for an electromagnetic beam with frequency ωj is 

given by

where

is the natural frequency of oscillations of plasma electrons, 

i.e., plasma frequency. When under the effect of intense 

fields of the incident laser beams the quiver velocity of 

plasma electrons becomes comparable to that of speed of 

light in vacuum; then, the effective mass me of electron in 

Eq. (4) needs to be replaced by m0γ, where γ is the relativ-

istic Lorentz factor, and m0 is the rest mass of electron. Fol-

lowing Akhiezer and Polovin [20], the relativistic Lorentz 

factor can be related to the total intensity of the laser beams 

as

(1)Ej(r, z, t) = Aj(r, z)e�(kjz−�jt)ex, j = 1, 2
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 is the coefficient of relativistic 

nonlinearity.

Since, the effective dielectric function of plasma depends 

on effective mass of plasma electrons through the plasma fre-

quency (Eq. 4). Hence, intensity dependence of electron mass 

in turn affects the optical properties of plasma in a nonlinear 

manner. The resulting intensity dependence of dielectric func-

tion of plasma for q-Gaussian laser beams can be written as

where

is the plasma frequency in the absence of laser beams. From 

Eq. (6), it can be seen that the dielectric function of plasma 

is a function of intensities of both the laser beams. Hence, 

during their simultaneous propagation through plasma, the 

two laser beams get nonlinearly coupled with each other. 

Equation (6) can be written as

where

are the linear parts of dielectric function and

are the nonlinear parts of dielectric function.

Cross‑focusing of laser beams

The evolution of beam envelope of an optical beam through 

a nonlinear medium is governed by the wave equation

As Eq. (10) is a nonlinear partial differential equation, it 

does not possess any closed-form exact solution. Thus, in 
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order to have physical insight into the propagation dynam-

ics of the laser beams, we have used a semi-analytical tech-

nique known as variational theory [21, 22] to solve Eq. (10). 

According to variational method, Eq. (10) is a variational 

problem for action principle based on Lagrangian density

Substituting the trial function for q-Gaussian beam profile 

in Lagrangian density and integrating over the entire cross 

section of the laser beam we get the reduced Lagrangian as 

L = ∫ £d
2
r . The corresponding Euler–Lagrange equations

give

Using Eq. (9) in (13), the set of coupled differential equa-

tions for beam widths of the two laser beams are obtained
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Equations (14) and (15) are the coupled nonlinear differen-

tial equations governing the cross-focusing of two coaxial 

q-Gaussian laser beams in collisionless plasma. For initially 

plane wavefronts, these equations are subjected to boundary 

conditions fj = 1 and 
dfj

d�
= 0 at ξ = 0.

To analyze the effect of deviation of intensity distribution 

of laser beams from Gaussian distribution and plasma den-

sity on cross-focusing of the laser beams eqs.(14)-(15) have 

been solved for following set of laser-plasma parameters: 

�1 = �2 = 1.758 × 1014 rad s−1, �1 = �2 = 10.7 μm
(

CO2 laser
)

, r1

= 15 μm, r2 = 16 μm, T0 = 107 K,
�2

p0
r
2
1

c2
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2
10
= 3, �2E
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20
= 1 

and for different values of q1 and q2 viz., q1 = q2 = (3, 4,∞).

Figure 7 illustrates the effect of deviation parameter q1 

of beam1 on focusing/defocusing of the two laser beams. It 

can be seen that during the propagation of the laser beams 

through plasma, their beam widths vary harmonically with 

distance. This behavior of the beam widths of the laser 

beams can be explained by examining the role and origin of 

various terms contained in Eqs. (14) and (15).

The first terms on the right-hand sides (R.H.S) of 

these equations that vary inversely with the cube of their 

beam widths are the spatial dispersive terms that model 

the spreading of the laser beams in transverse directions 

occurring as consequence of light’s wave nature of diffrac-

tion. The second terms on the R.H.S of these equations 

that have complex dependence on beam widths f1 and f2 of 

the two laser beams arise as a consequence of relativistic 

nonlinearity of plasma and nonlinear coupling the laser 

beams with each other. It can be seen that although two 
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copropagating laser beams through vacuum do not inter-

act with each other, but during their propagation through 

plasma medium, they get coupled with each other. As a 

consequence of the relativistic nonlinearity of plasma, 

the resulting nonlinear refraction of the laser beams tends 

to counterbalance the effect of diffraction by inducing a 

convex lens-like structure into the plasma. Thus, during 

the propagation of the laser beams through plasma, there 

starts a competition between the two phenomena of dif-

fraction and nonlinear refraction. The winning phenom-

enon ultimately decides the behavior of the laser beams, 

i.e., whether the beams will converge or diverge. Thus, 

there exists a critical value of the total beam intensity 

above which the beams will converge.

In the present investigation, the initial beam intensity has 

been taken to be greater than the critical intensity, i.e., why 

the spot sizes of the two laser beams are converging initially. 

As the beam widths of the laser beams get reduced, their 

intensity increases. When the intensity of the laser beams 

become too high, the mass of plasma electrons and thus 

the optical nonlinearity of plasma get saturated. Thus, the 

laser beams propagate as if they are propagating through 

a linear medium. Hence, after attaining minimum possi-

ble value, the beam widths of the two laser beams bounce 

back to their initial values. As the beam widths of the laser 

beams start increasing, the competition between diffraction 

and nonlinear refraction starts again. Now, the competition 

lasts till maximum values of f1 and  f2 are obtained. These 

processes go on repeating themselves and thus give breather-

like behavior to the spot sizes of the laser beams.

The plots in Fig. 7 depict that increase in the value of q1 

leads to decrease in the extent of self-focusing of first laser 

beam. This is due to the fact that as the value of q1 increases 

toward higher values, the intensity of the first laser beam 

shifts toward the axial region of the wavefront. As a result, 

laser beams with higher q value get lesser contribution from 

the off axial rays toward nonlinear refraction. As nonlinear 

refraction of the laser beam is a homeostasis for self-focus-

ing, increase in the value of q1 results in reduced focusing of 

beam 1. It is also observed from Fig. 7 that the laser beams 

with higher q values possess faster focusing. The underlying 

physics behind this fact is the slower-focusing character of 

the off-axial rays.

The plots in Fig. 7 also depict that increase in the value of 

q1 leads to increase in the extent of self-focusing of the sec-

ond laser beam. This is due to the fact that due to nonlinear 

coupling between the two laser beams, the increase in value 

of q1 favors the nonlinear refraction of beam2.

Figure 8 depicts the effect of deviation parameter q2 of 

beam 2 on evolution of the beam widths of the two laser 

beams. It can be seen that increase in value of q2 decreases 

the self-focusing of beam 2 and increases that of beam 1.

Excitation of electron plasma wave (EPW)

EPW that results in the generation of second-harmonics 

radiations can be excited into the plasma due to remarkable 

properties of plasma. Plasma as a whole possesses quasi-

neutrality, i.e., it contains almost equal number of free 

electrons and ions. But, as the electrons and net positively 

charged ions are separated, a disturbance can create regions 

of net negative and regions of positive charges acting like the 

plates of a charged parallel plate capacitor. Such an uneven 

Fig. 7  Variation of beam width parameters f1 and f2 of laser beams with distance of propagation in plasma for different values of q1 and at fixed 

values of q2 = 3, 
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distribution of charges results in an electric field running 

from positive to negative regions. This electric field pulls the 

electrons and ions toward each other with equal forces. Ions 

being much heavier than the electrons remain at rest and 

the electrons move toward the positive regions. As the elec-

trons move toward the ions, they steadily gain velocity and 

momentum like a pendulum moving toward its mean posi-

tion from an extreme position. Due to this gain in momen-

tum, the electrons overshoot their equilibrium positions 

resulting in reversing the direction of electric field. Now, 

the reversed electric field opposes the motion of electrons 

and slows them down and then pulling them back again. 

The process repeats itself, establishing electron oscillations. 

In the presence of thermal velocities, these electrons oscil-

lations form a longitudinal wave of positive and negative 

regions traveling through the plasma (Fig. 9).

The electron oscillators can be set in motion by intense 

laser beams. As the laser beams enter the plasma region, 

they exert pressure on plasma electrons, and hence, the 

plasma electrons move out of the way. As the laser beams 

exit, leaving a region deficient of electrons, the plasma 

electrons rush back to establish equilibrium. This move-

ment of plasma electrons initiates the oscillations and 

results in a plasma wave.

As the two laser beams with different frequencies 

are propagating simultaneously through the plasma, the 

plasma oscillations of the plasma electrons under the fields 

of the two laser beams also contain a frequency component 

equal to the sum of the frequencies of the two laser beams. 

The electron density perturbation n′ associated with the 

excited EPW evolves according to the wave equation

Taking
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Fig. 8  Variation of beam width parameters f1 and f2 of the laser beams with distance of propagation in plasma for different values of q2 and at 
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Fig. 9  Electron plasma wave



 J Opt

1 3

where � = �
1
+ �

2
 and k = k

1
+ k

2
 , we get the amplitude of 

density perturbation associated with plasma wave

Second‑harmonic generation

The density perturbation associated with excited EPW results 

in a nonlinear current density at frequency � = �
1
+ �

1
 that 

acts as source for a new radiation at frequency ω, for ω1 = ω2, 

this new radiation will be having frequency twice that of the 

pump beams and is thus called as second-harmonic radiation 

(Fig. 10).

e generated current density is given by

The electric field of the resulting harmonic radiation evolves 

according to the wave equation

This equation gives the magnitude of electric field of sec-

ond-harmonic radiation as

Defining the normalized power of second-harmonic radia-

tion as

We get

Equation (22) gives the normalized power of the second-

harmonic radiation produced by the two laser beams while 

propagating through the plasma. Equation 22 has been 

solved numerically in association with the beam width 

eqs.14 and 15, and the corresponding evolutions of the 
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normalized power with distance of propagation for differ-

ent values of qj are depicted in Fig. 11. It has been observed 

that the power of second-harmonic radiation is a monotoni-

cally increasing function of propagation, showing step like 

behavior. Each step occurs at the position of the minimum 

beam width of the two laser beams. This is because as the 

pump beams get self-focused their intensity increases and 

consequently the oscillation amplitude of the plasma elec-

trons also increases which in turn increases the amplitude of 

the generated EPW. Since, the density perturbation associ-

ated with EPW acts as source for nonlinear current density 

for second-harmonic radiation, there is monotonic increase 

in the second-harmonic power with distance.

To understand the physics of SHG in plasmas consider 

the simultaneous propagation of two intense laser beams 

through a plasma whose density is rippled along the direc-

tion of propagation of the two laser beams. These density 

ripples of the plasma are due to the propagation of an elec-

tron plasma wave through the plasma. In the presence of 

the laser beams, the plasma electrons start oscillating under 

the effect of the field of the laser beams and thus generate a 

transverse electric current JT. Under proper matching of the 

wave vectors and frequencies, the transverse current gener-

ates a second-harmonic wave. The generated harmonic wave 

then beats with the incident laser beams and thus produces 

variations in wave pressure. These variations in wave pres-

sure lead to migration of plasma electrons from the regions 

of high pressure to the regions of low pressure. The resulting 

density perturbation reinforces the initial density fluctua-

tions associated with electron plasma wave, i.e., the plasma 

wave gets amplified. The presence of this feedback loop 

(Fig. 12) leads to the amplification of the harmonic wave 

with distance of propagation.

The step like behavior of the power of second-harmonic 

radiation at the positions of the minimum beam width of the 

pump beams is owing to the fact that these are the regions of 

highest intensity, and hence, the current density for second-

harmonic radiation is maximum there. Hence, after attaining 

its maximum value the power of second-harmonic radiation 

moves toward its next possible higher value at next focal 

spot. These transitions of second-harmonic power from one 

maximum value to next maximum value give it a step like 

behavior.

Reduction in the power PT of second-harmonic radia-

tion with increase in the value of deviation parameter q1 

of beam 1 has also been observed from the plots in Fig. 11. 

The underlying physics behind this is the one-to-one 
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Fig. 10  Second-harmonic generation in plasma

Fig. 11  Variation of normalized power PT of second-harmonic radiation with distance of propagation in plasma for different values of deviation 

parameters of the laser beams and at fixed values of q2 = 3, �1E2

10
= 3 and 

�
2
p0

r
2
1

c
2

= 9

Fig. 12  Feedback loop for amplification of second-harmonic radiation
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correspondence between the power of second-harmonic 

radiation and the degree of self-focusing of the pump 

beams. As increase in the value of q1 reduces the extent 

of focusing of the pump beam 1 (beam with higher initial 

intensity) and increases the focusing of beam 2. However, 

in producing second-harmonic radiation, dominant role is 

played by beam with higher initial intensity. Hence, there 

is corresponding decrease in the power of second-harmonic 

radiation with increase in q1. Same is the reason behind the 

observed increase in the power of second-harmonic radia-

tion with increase in the value of deviation parameter q2 of 

beam 2 (Fig. 11).

Conclusions

In conclusion, we have investigated the effect of cross-

focusing of intense laser beams on second-harmonic gen-

eration in plasma under the effect of relativistic nonlinearity. 

Effect of the deviation of amplitude structure of laser beams 

from ideal Gaussian profile has been incorporated through 

q-Gaussian distribution. It has been observed that devia-

tion parameters of the laser beams significantly affect the 

cross-focusing and hence the power of generated second-

harmonic radiation. As the amplitude structure of laser beam 

with higher initial intensity (i.e., pump beam) converges 

toward the ideal Gaussian profile, there is decrease in the 

power of generated second-harmonic radiation. However, 

in case, the amplitude structure of laser beam with lower 

initial intensity (i.e., probe beam) converges toward the ideal 

Gaussian profile, and there is increase in the power of gen-

erated second-harmonic radiation. Thus, by controlling the 

deviation parameters of the pump and probe beams, one can 

optimize the power of second-harmonic radiation for a given 

set of plasma parameters. The results of present study may 

be helpful for the experimentalists working in the field of 

laser–plasma interactions.
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Abstract

Wireless Sensor Networks (WSN) are composed of small sensor nodes that either transmit their sensed data to the sink node 
directly or transmit it to its respective cluster head, which then transmits it to the sink node. However, this consumes a lot 
of network bandwidth and energy from the constrained sensor nodes. To address these constraints, Mobile Agents (MA) 
paradigm can be used in WSNs, which may lead to better energy and bandwidth conservation. When a single mobile agent 
is insufficient to complete a task, multiple mobile agents can be deployed to perform in parallel and reduce network latency. 
The set of sensor nodes and their sequence that MAs must migrate to complete a task is called an itinerary. The planning of  
the itinerary is the most prominent and significant issue related to the MA-based system, including the determination of an 
appropriate number of MAs to be dispatched, determining the set of sensor nodes and their sequence to be visited by MAs. 
This paper proposes a fuzzy-based algorithm to partition Wireless Sensor Networks into a set of sensor nodes, called domains, 
for enhancing the efficiency of the WSN in terms of its prolonged operation. Experimental evaluations are conducted to 
compare the proposed algorithm with benchmarked algorithms. The paper suggests that the proposed algorithm's integration 
with MA-based systems can enhance their performance and prolong the WSN's lifetime.

Keywords Clustering · Fuzzy based · Itinerary planning · Mobile agent · Routing · WSN

1 Introduction

A mobile agent is a small, self-governing software program 
that proactively moves from one node to another to execute 
tasks [1]. The source code of the mobile agent is compact, 

allowing it to compute results from the network [2, 3]. The 
mobile agent is designed to operate even in situations where 
there is a disconnection [2, 4]. It requires a network only 
to move to the next node in order to complete its assigned 
task. As a result, it can efficiently access resources in dis-
tributed systems even with low bandwidth. Once dispatched, 
the mobile agent starts its itinerary from the first node. The 
results of the computation are stored in its data payload [5, 
6]. It resumes execution at each itinerary node and gradu-
ally carries out its task [7]. To conserve energy, the pro-
cessed and accumulated data are aggregated at each node. 
This ensures that only meaningful, significant, and relevant 
information is carried by the mobile agent and delivered to 
the designated node [8, 9].

Mobile agents (MAs) play a crucial role in enhancing 
the efficiency and extending the lifetime of Wireless Sensor 
Networks (WSNs) through various means:

• Energy Efficiency: MAs can carry out computations 
and perform tasks locally within the network, reduc-
ing the need for constant data transmission to a central 
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point. This minimizes the energy expenditure associated 
with long-distance communication, thereby conserving 
the energy of individual sensor nodes. By executing 
tasks locally, MAs can help mitigate the energy con-
sumption imbalance among nodes, extending the overall 
network lifetime.

• Data Aggregation and Processing: MAs can collect 
and aggregate data from multiple sensor nodes while in 
transit, consolidating information before transmitting 
it to the sink or base station. This aggregation reduces 
redundant transmissions and helps in processing data at 
intermediate points, lowering the volume of information 
sent across the network. Consequently, it reduces the 
amount of data traffic, conserving energy and band-
width resources.

• Dynamic Network Reconfiguration: MAs facilitate 
dynamic reconfiguration and adaptability within WSNs. 
They can reprogram sensor nodes, change their function-
alities, or update their operating parameters on the fly. 
This adaptability helps in responding to changing envi-
ronmental conditions or network requirements, optimiz-
ing the network's performance and efficiency.

• Fault Tolerance and Load Balancing: MAs can con-
tribute to fault tolerance by intelligently redistributing 
tasks among sensor nodes. In case of node failures or net-
work congestion, MAs can redistribute tasks or reroute 
data flows to ensure the network's continued operation. 
This load balancing prevents nodes from becoming over-
loaded and prolongs the overall network lifetime.

• Optimized Routing and Path Planning: MAs can intel-
ligently navigate through the network, selecting efficient 
routes to transmit data. They can employ adaptive routing 
algorithms, avoiding congested areas or selecting paths 
that require less energy consumption, which in turn 
reduces the overall energy expenditure of the network.

In essence, the deployment of mobile agents in WSNs 
introduces flexibility, adaptability, and efficiency enhance-
ments. Their ability to perform localized computations, 
aggregate data, optimize routing, and dynamically manage 
network resources significantly contributes to improving 
WSN efficiency and prolonging its operational lifetime.

To complete the task, a set of sensor nodes and their 
visiting sequence by the mobile agents must be determined 
through itinerary planning. This planning significantly 
impacts the system's overall performance [10]. Assigning 
numerous large source nodes to a single itinerary can result 
in inflated data payloads for the mobile agents, leading to 
reliability issues, delays, and inefficiencies. To address this, 
dispatching multiple mobile agents in parallel can reduce 
itinerary length and resolve the aforementioned issues asso-
ciated with a long itinerary.

Multiple mobile agent itinerary planning (MIP) poses 
various challenges, which have been addressed by several 
authors through the presentation of single and multiple 
mobile agent itinerary planning algorithms. These algo-
rithms comprise two distinct approaches: static itinerary 
planning and dynamic itinerary planning [11, 12]. In static 
itinerary planning, the mobile agent knows its scheduled 
itinerary in advance and uses centralized routing. This 
approach is suitable for monitoring-type applications, such 
as measuring physical quantities like temperature, pressure, 
and humidity. However, it becomes invalid when a node dies 
or goes offline, as its itinerary is predetermined and listed in 
the mobile agent's data structure. In contrast, the dynamic 
approach is better suited for target-tracking type applica-
tions, where the trajectory root of the target is unknown, and 
the itinerary is decided on the fly, independent of any pre-
determined schedule. This reactive approach is well-suited 
for scenarios where the agent needs to decide its sequence 
of source nodes in real-time. The literature presents a range 
of issues related to MIP, and relevant suggestions have been 
incorporated into proposed algorithms by different authors.

This paper is structured as follows: Section 2 provides 
a concise literature review, which contextualizes clustering 
of Wireless Sensor Networks (WSN) for a mobile agent. 
Section 3 describes the proposed algorithm in detail, includ-
ing corresponding pseudo code. Section 4 introduces the 
validation indices used to evaluate the performance of the 
proposed algorithm. In the next section, the results of experi-
ment evaluations are presented, along with a detailed math-
ematical analysis of the proposed algorithm's execution. 
Finally, succinct conclusions are drawn based on the study's 
findings in the conclusion section.

2  Related work

A comprehensive literature review revealed that clustering 
networks for multi-mobile agent itinerary planning (MIP) 
follow specific criteria. The proposed algorithms, as sur-
veyed in literature, employ diverse techniques, including 
k-means, x-means, tree-based, genetic algorithm-based, 
center locations-based, or directional-based approaches, to 
partition the network.

The research gaps and the strengths of the reviewed algo-
rithms have been discussed in Table 1.

After a review, it was discovered that various criteria are 
used to partition networks for multiple mobile agent itiner-
ary planning (MIP). Proposed algorithms in the literature 
use different methods to partition networks, including:

• k and x-means: Greatest Information with Greatest 
Memory Mobile agent (GIGM-MIP) [1], Chen et al. 
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[2], Spawn Multi Mobile Agent Itinerary Planning 
(SMIP) [3], Pourroostaei Ardakani [4].

• Tree structured: Minimum Spanning Tree MIP (MST-
MIP) [5], Tree Based Itinerary Design (TBID) [6], 
Mobile Agent Itinerary Planning Using Named Data 
Networking (MINDS) [7], Near Optimal Itinerary 
Design (NOID) [8], Iterative Local Search (ILS) [9], 
Disjoint MIP [10], Clone Based Itinerary Design (CBID) 
[11], Near Optimal Itinerary Design (SNOID) [12].

• Genetic algorithm based: Clonal Selection Algorithm 
for Multi-agent Itinerary Planning (CSA-MIP) [13], 
Aloui et al. [14], Wu et al. [15], Qadori et al. [16],Genetic 
algorithm based Multi Mobile Agent Itinerary Planning 
(GA-MIP) [17].

• Center locations based: Central Location based MIP 
(CL-MIP) [18], Energy efficient MIP (EMIP) [19], 
Optimized MIP (OM-MIP) [20], Multi Mobile Agent 
itinerary planning- based Energy and Fault aware data 
aggregation in Wireless Sensor Networks (MAEF) [21].

• Directional based: Source Grouping based MIP 
(SGMIP) [20], Directional Source Grouping based MIP 
(DSGMIP) [22], Chou and Nakajima [23].

• Angle based: Angle Gap based MIP (AG-MIP) [24] 
[25], Scalable and Load Balanced Mobile Agents based 
Data Aggregation (SLMADA) [25].

• Evolutionary technique based: Brownian Motion-
Based Flower Pollination Algorithm (BMFPA) [26, 27].

• k-mediods based: Route planning of mobile agents using 
Markov Decision Process (RA-MDP) [28].

Inferences drawn from the observation made from the 
table are:

1. Most strategies involve dividing networks by starting 
from the center and executing outward.

2. Once a central processing element (PE) is chosen, net-
work partitioning occurs through consideration of geo-
graphic proximity distances and abundance density, 
resulting in disjoint clusters.

3. The optimal number of MAs can be determined through 
static analysis.

With incomplete, imperfect, and uncertain information, 
finding optimal solutions using heuristic approaches, itera-
tive methods, or any optimization algorithm becomes chal-
lenging. Soft computing techniques have gained popularity 
to address these problems and provide optimal solutions. 
These techniques require less computation as well. Based 
on these findings, the paper proposes and implements an 
algorithm that uses fuzzy c-means clustering to partition the 
network. Python has been used to implement algorithm for 
experimental evaluations.

3  Proposition: an adaptive FCM clustering 
algorithm for sensor networks 
with dynamic k‑values

The primary limitation of the k-means clustering algo-
rithm is the need to pre-determine the number of clusters. 
The x-means and existing FCM clustering algorithms are 
variations of the k-means approach. In x-means clustering, 
the assumed number of centroids (x) is set to a minimum 
value and each cluster is decomposed to achieve optimal 
clustering. Existing FCM algorithms assume a fixed value 
for k, then iteratively recalculate new centroids and assign 
data items to k clusters using weighted values to obtain 
optimal clusters.

In contrast, an adaptive FCM Clustering Algorithm for 
Sensor Networks with dynamic k-values (AFCM) is pro-
posed which does not require a pre-determined k-value. 
Instead, after selecting a centralized processing node 
(PE), the number of Sensor Nodes (SNs) within its vicin-
ity becomes the value of k. These k nodes are referred to 
as the domain initials (DI).

In the proposed Adaptive FCM Clustering Algorithm 
for Sensor Networks with dynamic k-values (AFCM), the 
need for a pre-determined k-value is eliminated. Instead, 
the value of k, representing the number of Sensor Nodes 
(SNs), is determined based on the number of SNs within 
the vicinity of a centralized processing node (PE).

The central processing element is currently selected as the 
node positioned at the network's approximate center without 
specific predefined criteria. The goal is to utilize this central 
node to facilitate efficient clustering of the wireless sensor 
network (WSN), enabling the initiation of multi-mobile agent 
itinerary planning for optimal route coverage.

The initial k nodes, termed domain initials (DI), are 
selected based on their proximity to the PE. Each SN 
within a vicinity range of 5 units from the PE is included 
in the DI set to establish an efficient cluster. The selection 
of 5 units is arbitrary for experimental ease but can be 
adjusted for real-world applications depending on specific 
WSN requirements. Fine-tuning this distance threshold 
according to the application ensures optimal performance 
in practical deployment scenarios.

The remaining SNs are assigned to the elements  (DIi) of 
the set DI. To achieve this, the membership value (µi, j) of 
each remaining SN is calculated with respect to each  DIi 
that is directly within its vicinity. The membership value 
is determined with the given Eq. (1). The sum of member-
ship values of each remaining sensor node with respect to 
each  DIi (i.e., ∑ µi, j) is then calculated in advance. Sub-
sequently, each SN is assigned to the  DIi with the maxi-
mum membership value. The sum of membership values 
(∑ µi,j) is updated after each SN is assigned, and this 
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process continues until all sensor nodes in the network are 
assigned to their respective  DIi. If the membership value 
of an SN with respect to two or more domain initials is the 
same, then the SN is assigned to the  DIi with the lowest 
value of ∑ µi,j. After assigning all SNs to their respective 

k  DIs, the updated ∑ µi,j values are compared to the thresh-
old value (minimum value of ∑ µi, j for which a single MA 
can be deployed). Any  DIi with ∑ µi, j less than the thresh-
old value is dropped out. To reduce the number of DIs or 
 DIi, the domain initials and assigned nodes are assigned 
to existing domain initials. This reduces k domains to c 
domains and results in a distribution of the sensor nodes 
in non-overlapping and load-balanced domains.

• |DI| is the cardinality of set containing source nodes 
under PE’s vicinity.

• The exponent 'm' regulates the degree of fuzziness or 
crispness within the clustering process. This parameter, 
'm,' is adaptable and influences the boundaries between 
clusters: a lower 'm' value creates clearer cluster bound-
aries, whereas a higher 'm' value results in more blurred 
boundaries between clusters.

The AFCM algorithm differs from existing FCM algo-
rithms in several ways:

• One notable difference is that AFCM is capable of deter-
mining and optimizing the number of clusters on its own, 
while FCM requires the user to specify the number of 
clusters using methods such as the elbow, Dunn index, 
Davies Bouldin (DB) index, silhouette index, etc.

• Both algorithms assign a degree of membership to each 
estimated centroid and associate data items with the 
centroid with the highest membership value. However, 
AFCM differs when there is a dilemma, that is, when 
the membership value corresponds to more than one 
centroid is the same.

• To address this issue, the proposed algorithm estimates 
the sum of membership values of each data item with 
respect to all relevant centroids in advance. With this 
estimation, each data item is associated with the appro-
priate centroid that has the minimum sum of member-
ship values. This ensures that the data item is associ-
ated with the centroid that is likely to have fewer nodes 
associated with it in the future.

• Furthermore, the AFCM algorithm executes in a hier-
archical manner until all nodes are associated, while 
FCM iteratively shifts the centers of its clusters from 

(1)�i, j =
di, j

−2

m−1

∑�DI�
l=1

di, j
−2

m−1

the current position to the optimal position to minimize 
the objective function. The objective function defines 
the spatial separation from the data points to the con-
cerned centers.

3.1  Algorithm overview and description

This algorithm outlines a process for establishing connec-
tions among sensor nodes (SNs) in a network. It begins 
by defining key elements: PE as the Processing Element, 
DI as the set of Domain Initials, SN as Sensor Nodes, and 
Dist(x, y) as a function returning the Euclidean distance 
between xth and yth sensor nodes.

• Initialization: It starts by setting a vicinity range 
of 5 (arbitrarily chosen for ease of experimentation 
and size of networks chosen for experimentation) for 
each SN. It creates a DI set containing SNs within 
this vicinity of a designated PE. For each SN not 
equal to PE and within the vicinity range, it appends 
them to DI, designates PE as their parent, and marks 
them as connected.

• Remaining Sensor Nodes (RSN): RSN comprises 
SNs outside the DI. It aims to find the closest mapping 
of each RSN element with respect to elements in DI. 
It calculates the distance between each DIi and every 
RSN node, ensuring it's within the vicinity. Then, it 
identifies the DIi that has the lowest cumulative map-
ping with RSN. If there's a tie, it selects the DIi with 
the least SUM(DIi). This process continues until all 
SNs are connected.

• Threshold-based Decision: If the cumulative SUM(DIi) 
falls below a specified threshold, indicating weak con-
nectivity, it drops that DIi and treats it along with its 
connected nodes as part of the RSN. Then, it restarts the 
process to connect these nodes.

• Stopping Condition: The process stops when all SNs 
are marked as connected.

In essence, this algorithm is designed to establish con-
nections between sensor nodes in a network, iteratively 
evaluating proximity and connectivity until all nodes are 
appropriately linked within a defined vicinity.

3.2  Pseudo code for the proposed adaptive 
fuzzy c‑means clustering (AFCM) algorithm 
is as follows

Algorithm:  Proposed Adaptive Fuzzy c-means clustering 
Algorithm (AFCM)
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Let: 

� PE: Processing Element

� DI: Set of Domain initials

� DIi: Element of set DI

� PE: Processing Element

� SN: Sensor Node

� Dist (x,y): returns the Euclidian distance between xth and yth sensor nodes

� The Vicinity range of each SN is set to  5

1. Initialize DI as an empty set.

2. for ( each SN )

If ( ( SN ≠PE ) and Dist ( SN, PE ) ≤5 ) then:

� Add SN to DI

� Set SN.parent =PE

� Set SN.connected = true

3. Set RSN as the set of all remaining sensor nodes : ∀ SN – DI

4.  Find the closest mapping of each element of RSN with respect to DIi:

� For each remaining j in RSN:

o Calculate { µi,j   ∀ i ∈ DI, ∀j ∈ RSN : Dist (i,j) ≤ 5

o For each element in the set DI:

▪ Calculate    ( ) = ∑ ,

▪ If there exists a node j in RSN where the value of μi,j is the same for two DIi:

� Append j to the RSN for which the SUM(DIi) is less.

▪ Else

� Append the closest mapping of RSN to DIi.

� Update the value of  SUM(DIi)

5. Repeat step 4 until SN.connected = true

6. If ( ( ) < Threshold value) Then

o Drop DIi and treat DIi and connected nodes as members of set RSN

o Follow step-4 to connect DIi and its further connected nodes             

7. Stop
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4  Experimental evaluations

4.1  Validation indices

A set of indices is used to evaluate, validate, and interpret 
the performance of clustering algorithms. These indices 
include metrics such as the Dunn index and silhouette index. 
The primary purpose of these validation indices is to con-
firm the effectiveness of clustering algorithms. In addition, 
they play a crucial role in determining the number of clusters 
in a network. The indices are calculated based on the ratio of 
cohesion to separation, and their values serve as the criteria 
for assessing the quality of clustering algorithms. Table 2 
provides a brief overview of the metrics used.

4.1.1  Cohesion (compactness)

Cohesion metric measures the distance within a cluster. A 
low cohesion value indicates well-clustered data, while a 
high intra-cluster value indicates poor clustering quality.

4.1.2  Separation (spatial separation)

Separation refers to the measurement of inter-cluster dis-
tances. This metric reveals the degree to which a cluster is 
isolated or distinct from other clusters within the network.

4.1.3  Dunn index

The Dunn Index is a metric that evaluates two crucial 
aspects of clustering: cohesion/compactness and separation. 
Specifically, it gauges the relationship between the minimum 
separation distance and the maximum compactness value. 
A higher index value indicates greater segregation between 
clusters. Importantly, the index value is always non-negative.

4.1.4  Silhouette index

The Silhouette Index is a metric that measures the degree 
of belongingness of a data item to its cluster as compared 
to other clusters. This index takes values between -1 and 1, 
where a higher value indicates a better match of the data 
item with its cluster. In addition, a clustering configuration 
is considered appropriate if most objects have a high Sil-
houette Index value.

4.2  Data sets

In this empirical study, Table 3 illustrates the various deploy-
ments of WSN. These datasets were utilized to validate and 
evaluate the proposed algorithm's performance. Specifically, 
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datasets 1, 2, 3 and 4 were designed to represent distinct 
domains with 15, 20, 30, and 40 nodes, respectively. Each 
node is characterized by its two-dimensional coordinates (x, 
y), and a corresponding Euclidean value has been computed 
for each coordinate.

4.3  Empirical findings and performance evaluations

To assess the effectiveness of the AFCM algorithm, only 
the Dunn and Silhouette indices are calculated. These indi-
ces were chosen because they inherently encompass both 
cohesion and separation making them ideal measures of the 
algorithm's effectiveness.

These indices were also computed for the Birch, Fuzzy 
c-means, k-means, Mean shift, Hierarchical and OPTICS 
algorithms for comparison.

In fuzzy c-means clustering algorithms, sometimes the 
chosen value for 'c' does not produce a significant impact, so 
it needs to be optimized. This can be achieved by selecting 
different numbers of 'c' values based on the resulting valida-
tion values to optimize the clustering. The optimal 'c' value 
can be determined by identifying the value that produces the 
highest index values.

Unlike the k-means clustering algorithm, which is inad-
equate for determining the 'k' value and relies on heuristics 
such as the elbow technique, the proposed AFCM algorithm 
does not require any additional methods to select the 'c' 
value. Instead, the algorithm itself selects an initial 'c' value 
and optimizes it. Tables 4 and 5 provide the evidences of the 
algorithm's proficiency in determining the optimal 'c' value.

Regarding Tables 4 and 5 above, the indices values of the 
AFCM algorithm indicate the effectiveness of the algorithm 
in optimizing the 'c' value. Additionally, the modest indices 
values of the AFCM algorithm indicate that the resulting 
domains are well separated, and each node is tightly packed 
within its respective domain.

5  Results and analysis

This paper aims to validate and evaluate the performance 
of the AFCM (Adaptive Fuzzy c-means) clustering algo-
rithm in WSN. The algorithm is compared with exist-
ing benchmarked approaches, showing moderate results. 
However, since the proposed algorithm was specifically 
designed for the itinerary planning criteria of MAs in 
WSN, the results are justified. The algorithm effectively 
distributes the network into multiple domains, with an 
optimized number of MAs for each domain. Tables 4 and 
5 provide evidence of this optimization. The efficiency of 
the clustering algorithm is analyzed by representing the 
graphical clusters of a network with 40 nodes using vari-
ous algorithms, including Birch, Fuzzy c-means, k-means, 
Mean shift, OPTICS, and the proposed algorithm. The 

Table 3  Different data sets to 
validate the proposed algorithm

Data Set No. of Nodes

Dataset 1 15

Dataset 2 20

Dataset 3 30

Dataset 4 40

Table 4  Effectiveness of Dunn 
Validation Index on Different 
Data Sets

Data Deployment K-means Fuzzy C-

means

Proposed 

(AFCM)

BIRCH OPTICS Hierarchical Mean

Shift

Dataset 1 0.0323 0.0355 0.0383 0.0243 0.0216 0.0136 0.0196

Dataset 2 0.0389 0.0495 0.0489 0.0285 0.0224 0.0224 0.0214

Dataset 3 0.0655 0.0655 0.0655 0.0327 0.0288 0.0288 0.0288

Dataset 4 0.0921 0.1015 0.0891 0.0269 0.0252 0.0252 0.0252

Table 5  Effectiveness of 
Silhoutte Validation Index on 
Different Data Sets

Data Deployment K-Means Fuzzy C-

Means

Proposed

(AFCM)

BIRCH OPTICS Hierarchical Mean

Shift

Dataset 1 0.4211 0.4322 0.4332 0.4324 0.3411 0.3211 0.3208

Dataset 2 0.4122 0.4211 0.4220 0.4221 0.3211 0.3122 0.3198

Dataset 3 0.3951 0.3951 0.3951 0.3951 0.2795 0.2695 0.2635

Dataset 4 0.3586 0.3712 0.3732 0.345 0.2519 0.2409 0.2211
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(a)  5 Clusters                                                            (b) 5 Clusters

(c) 5 Clusters          (d) 2 Clusters

     (e ) 2 Clusters  (f)  5 Clusters

Fig. 1  Clusters formed for 40 nodes network a Birch Algorithm b Fuzzy C-means c K-means Algorithm d Mean shift e OPTICS Algorithm f Proposed algorithm
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clusters formed by these algorithms are depicted in 
Fig. 1(a) to (f) respectively.

The comparison of various algorithms has been summa-
rized in the Figs. 2 and 3 below, with results evaluated based 
on Dunn index and Silhouette index.

The results in Fig. 2 indicate that AFCM performs mod-
erately well when evaluated with Dunn index. On the other 
hand, the clustering results of AFCM outperform other algo-
rithms when evaluated with Silhouette index in Fig. 3.

The analysis of AFCM in the context of Dunn and Silhou-
ette indices indicates that the algorithm performs well in the 
application. AFCM clustering algorithm has been developed 
to distribute the network into multiple domains, with each 
domain having an appropriate number of MAs deployed. 
By selecting a threshold value, the appropriate number of 
MAs for each domain can be determined, ensuring that all 
dispatched MAs are load balanced. As a result, task delays 
will be reduced, leading to improved performance.

Fig. 2  Comparison of Dunn 
Index

Fig. 3  Comparison of Silhou-
ette Score
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6  Conclusion

This paper explores the challenge of clustering in multi-
mobile agent routing for Wireless Sensor Networks and 
emphasizes the significance of deploying an appropri-
ate number of mobile agents per domain. To address this 
challenge, a novel strategy called AFCM (Adaptive Fuzzy 
c-means) has been introduced which aims to divide the net-
work into a number of disjoint domains.

The proposed AFCM algorithm has been compared and 
validated with clustering evaluation indices for network 
deployment. The performance of Birch, Fuzzy c-means, 
k-means, Means, and OPTICS algorithms against the 
AFCM clustering algorithm using Dunn and Silhouette 
indices has also been evaluated.

The results demonstrate that AFCM achieves modest 
index values, indicating its adaptability and ability to cluster 
sensor nodes tightly while separating domains. The AFCM 
algorithm determines the number of mobile agents for each 
domain by selecting an appropriate threshold value. However, 
evaluating the performance of this algorithm can be complex 
and challenging, and approximate computations can be used 
to strike a balance between complexity and accuracy.
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Abstract: Negation is one of the challenges in sentiment analysis. Negation has an immense influence on how accurately text data

can be classified. To find accurate sentiments of users this research identifies that the impact of negations in a sentence needs to be

properly handled. Traditional approaches are unable to properly determine the scope of negations. In the proposed approach Machine

learning (ML) is used to find the scope of negations. Moreover, the removal of negative stopwords during pre-processing leads to the

flipped polarity of sentences. To resolve these challenges this research proposes a method for negation scope detection and handling in

sentiment analysis. First, negation cue (negative words) and non cue words are determined, these negation cue and non cue words in

addition to lexical and syntactic features determine the negation scope (part of sentence affected by cue) using the Machine Learning

(ML) approach i.e. Conditional Random Fields (CRF). Subsequently, in negation handling the sentiment intensity of each token in a

sentence is established, and affected tokens are processed to determine the final polarity. It is revealed that sentiment analysis with

negation handling and calculated polarity gives 3.61%, 2.64%, 2.7%, and 1.42% increase in accuracy for Logistic regression, Support

Vector Machine, Decision Tree (DT), and Naive Bayes (NB) consecutively for Amazon food products dataset. Consecutively, 9.4%,

3%, and 2% improvement for Logistic Regression (LR), Support Vector Machine (SVM), and Naive Bayes for electronic dataset.

Keywords: : Conditional Random Field, Decision Tree, Logistic Regression, Machine Learning, Naive Bayes, Support Vector

Machine.

1. Introduction

The proposed work demonstrates negation scope
detection with various syntactic and lexical features trained
using CRF then this scope is used for negation handling.
Further, sentiment classification of reviews is done using
a customized stopwords list and calculated polarity of
reviews after negation handling by considering the impact
of negations on each word in a sentence. Finally, sentiment
analysis is performed on these sentences. In the proposed
work a customized stopwords list is being used that only
removes limited words from sentences. But, this list will
not remove negations like can’t, wouldn’t, etc. that affect
the polarity of sentences. This method deals with explicit
negations where negative words are present in the data and
the results depict that the accuracy of sentiment analysis is
enhanced with the use of negation handling.
Sentiment analysis is a key sub-domain of natural language
processing, which is an integral part of ML technology.
This technology space is catalyzed by how well human
language is understood, making it necessary for global
firms to stay competitive. Businesses analyze the emotions
and attitudes of customers towards a product by performing
sentiment analysis of reviews and feedback provided by

customers over numerous e-commerce and social media
platforms. In such analysis, some challenges make it
arduous to gauge the real emotions of consumers, and
negation is identified as one such key challenge. Negations
refer to negative words in a sentence that can affect
the orientation of sentiments. It is one of the linguistic
phenomena that leads to flipping the polarity of reviews or
feedback and results in wrong predictions of sentiments.
For instance, “I hate this product less than I used to”,
here, “less than I used to” act as a sentiment shifter. Some
other examples are “fairly good, but not of my style”, “I
don’t dislike this movie”, where “not” and “don’t” are the
negations and if removed will lead to sentiment orientation
change [1]. Literature review revealed that during the
classification of sentiments, usually the stopwords (no,
I, we, you, they, the, not, is, am, are, cannot, etc.) are
removed in the preprocessing phase given by [2], [3],
[4], [5], [6], [7], [8], and [9] because it helps to bring
down the dimensions of text for classification. Some of the
negative stopwords are responsible for accurate sentiment
predictions, however, if eliminated may lead to polarity
flipping. For instance, “He is not a bad boy”, here “not”
is one of the stopwords and its removal may flip the

E-mail address: sonikartika19@kuk.ac.in, pmittal@kuk.ac.in, monikaporiye@gmail.com https:// journal.uob.edu.bh/
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polarity of the sentence. Negations may be implicit and
explicit given by [10] and this research deals with explicit
negations. Explicit negations are those negations in which
negation cue is present (no, not, nothing, don’t etc.) in
the sentence. The adverse impact of negations on the
sentiment orientation of text has been spotted by [1], [11].
Many approaches such as rule-based [11], [12], regular
expression based [13], lexicon-based [14], semantic,
syntactic, and linguistic features-based given by [15].
Rule-based and lexicon approaches have limited scope and
are unable to handle complex linguistic structures due to
domain dependency. It also requires human intervention for
creation and maintenance. However, ML approaches are
better and minimize the manual work given by [16], [16]
for negation scope detection. UCM-I [17] and UCM-II [13]
are two rule-based approaches used for negation cue and
scope detection. These two approaches properly finding
negation cues and scopes but UCM-II [12] was not able to
properly manage the sentences having two or more scopes
corresponding to cues in a sentence. Moreover, UCM-I
[17] also works well but it fails to determine the proper
scope of negations when subject and object of some events
are negated. In the Proposed approach these shortcomings
are handled using ML approach to find the scope of
negations. According to the literature, it is revealed that
there are very few approaches that perform negation
handling and sentiment analysis [16], [18] after negation
scope detection and handling. Numerous approaches
perform only negation cue and scope detection. In this
research, not only negation cues and scope are detected
but we also handle the impact of negation and find the
correct polarity of the sentence then sentiment analysis is
done using Amazon datasets. In the proposed approach,
negation scope detection is performed using CRF and
sentiment analysis using supervised ML [19] classifiers
such as SVM, LR, DT, and NB. As per our literature
knowledge, few ML approaches [1], [15], [16], [18], [20]
and [21] utilize negation scope detection, and handling in
sentiment analysis. Among these approaches, only [21],
[1], and [21] are compared with the proposed approach for
sentiment analysis after negation handling. In the proposed
approach LR exhibits 85%, 86%, and SVM exhibits 85%,
83% accuracy for product and electronics datasets. This
accuracy is improved as compared to [21], [1], and [20] but
the performance of NB declined to 71%, 70% as compared
to [1]. For scope detection, the proposed approach gives
a 98% f-score which is better than [22], [23], [17] and [12].

This article is divided into six sections where sections 1
and 2 lead with an introduction and related work. Sections
3 to 6 explain the proposed methodology, results, and the
final comparison to existing approaches, and conclusion.

2. RelatedWork

The rule-based approach is a static and manual tech-
nique to resolve the negation challenge. It involves the
manual creation of regular expressions to handle negations
but due to the dynamic nature of negation, these static

rules are unable to determine all the contextual relations
among all the words. NegEX is one such negation handling
approach used in the medical domain and due to its static
nature, it may cause wrong predictions of patient data
given by [24]. One of the limitations of this work is the
wrong interpretation of word’s sentiment if same word
appears more than once in a sentence. For instance, “the
patient was placed under neutropenic precaution, and two
days later the patient was no longer neutropenic”. In this
sentence first “neutropenic” was interpreted by the model
as positive and second as negative. To minimize this error
rate, a DEEPEN algorithm was proposed that can consider
dependency relations among all the words. It uses the
Stanford dependency parser (SDP) and helps to reduce
incorrect predictions with an accuracy of 91% and 97%
given by [13]. One of the major limitations of this work is
some of the dependency relations generated by SDP are not
accurate for clinical data because the SDP was created using
English web Treebank. This tree bank contains only the sen-
tences of newsgroups, weblogs etc. Lexicon-based approach
makes use of pre-annotated lexicons which consist of words
and their sentiment intensity. SentiWordNet (SWN) is one
such lexicon that provides various English words and their
polarity given by [18], and an antonym dictionary given
by [25] for assigning antonyms. A lexicon-based sentiment
analyzer with negation handling for the Urdu language also
improves the efficiency of sentiment analysis due to the use
of a vast lexicon for the Urdu language, effective negation
handling, intensifiers, and context-dependent words for the
Urdu language given by [14]. However, this approach has
some limitations such as it assigns neutral sentiment to a
sentence in the absence of any positive or negative word, for
instance “Is there any solution to this problem?”. Although,
the polarity of this sentence is positive. Lexical approaches
were unable to determine the dependency of words, so
the semantic disambiguation technique given by [18] was
proposed to find the sentiments of sentences. Here, correct
negation words were determined by including grammatical
relations among words. Rule-based and lexical approaches
require manual work for creation and maintenance. For
automation and better results ML approaches are used by
[16]. Once these models are trained with the required data,
they can make predictions according to learned patterns. In
[16] it was revealed that due to the presence of multiword
cues the classifier performs wrong classifications. In [26]
Explicit negations were handled using ML approaches and
it was revealed that the performance was improved with
negation handling. While performing negation handling it
is essential to maintain the semantics of words in a sentence.
So, a feature-based negation handling model was introduced
that can extract semantic and syntactic features such as
lexicon features, POS, n-gram, and morphological features.
The inclusion of these features with negation handling
enhanced the accuracy of SVM, NB, and DT for sentiment
analysis of tweets given by [15]. In [20] a mathematical
modelling approach was introduced for negation handling in
sentiment analysis, but this approach has several limitations
such as it interprets wrong polarity of sentences when
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there are multiple positive and negative parts in a sentence.
However, proposed approach handle this by finding the
proper scope of negative words in a sentence using CRF.
In proposed approach negation scope detection, handling
is done and finally the sentences generated after negation
handling are used for sentiment analysis.

3. ProposedMethodology for Negation Scope Detection
and Handling in Sentiment Analysis

This section presents the research methodology used
for negation cue, scope detection, negation handling, and
sentiment analysis of user review as shown in Figure
1. Here, processed Conan Doyle dataset is trained using
various lexical and syntactic features for BIO (begin, inside,
outside) labels prediction. After performance evaluation,
this trained CRF is used for scope prediction in Amazon
dataset. Finally sentiment analysis is done before and after
negation handling.

A. Data collection

In this research, Conan Doyle’s (Sherlock) story dataset
annotated with negation cue and scope is used to train
and test CRF for negation scope prediction using BIO
(beginning, inside, outside) labels. This dataset is collected
from GitHub, and another two datasets used in this research
are related to consumer reviews (electronics and food prod-
ucts) collected from amazon.com and kaggle.com. These
datasets consists of various attributes such as UserId, pro-
file name, helpfulness numerator, helpfulness denominator,
score, time, summary and text. Among all these attribute
score and text attributes are used in the proposed method.
These datasets consist of various anomalies removed by
applying data cleaning.

B. Data cleaning and transformation

In data cleaning, all the numbers, special characters,
HTML tags, and hyperlinks are removed from the dataset.
Data cleaning ensures there should not be any unwanted
characters present in the data, increasing the dimensions of
the data given by [27]. Further, each sentence is split into
different rows to work with each word in that sentence.
Subsequently, these datasets are used for negation scope
prediction, negation handling, and sentiment analysis of
reviews with and without negation handling.

C. Negation Cue and scope detection

Negation cue prediction is considered a classification
problem and 0, 1 (cue, non cue) is assigned to all the
tokens in the dataset. 1 is assigned to tokens annotated
with B cue and 0 is assigned to other tokens. Also, an
additional lexicon of cues is provided for better prediction
of cues. Negation cues may impact the polarity of words in
a sentence, and negation scope helps to determine those
affected words. To determine the correct scope of cues
various syntactic and lexical features of cues, tokens, and
neighboring tokens are required. These features help to
predict the scope in the form of BIO labels in a sentence. In
this work ML approach is used to find the scope of negation
which perform well as compared to static approaches.

1) Features for Scope Detection

It is an important phase for a machine [2] learning model
to be more specific and efficient about predictions. The
feature of raw data helps the model to learn and predict
the patterns of data. In this research, various token-level
features have been extracted and transformed into vector
form for the predictions of the negation scope. Various token
level features of targeted word, preceding and subsequent
word of the targeted word such as parts of speech (POS)
tag, lemma of cue and token are extracted.

(lemmai+1, POS i+1, lemmai−1, POS i−1, lemmai, POS i)

Along with the features of cue and token, the neighboring
features of cue and token are also used for negation scope
prediction. All these features are vectorized and provided
to the classifier for scope prediction in data. In addition to
these features, a lexicon of explicit cues is also provided.
All features used for scope prediction are mentioned in
Table 1. The final list of lexical and syntactic features used
to detect the scope is determined by performing various
experiments. In these experiments, we used different lexical
and syntactic features, and it was revealed that both lexical
and syntactic features are important for scope prediction.
This list of features improves the prediction of BIO labels
rather than using other combinations of lexical and syn-
tactic features. Natural Language ToolKit (NLTK) provides
WordNetLemmatizer() to find the root word and the POS
tagger provides noun, verb, adjective, adverb, etc. tags to
the words in a sentence. These tags help to determine the
syntactic structure and text information of a sentence. To
find the relationship among all the neighboring words the
features of neighboring words such as chain of POS, lemma,
cue and focused word, etc. are also provided to CRF for BIO
labels prediction. Figure 2 shows the dependency graph for
the sentence “not good i would never buy it again”. This
figure represents the dependencies using edges and nodes
which shows the semantic relationship among these edges
and nodes. To find the path between “not” and “buy”, it
is required to traverse the path between these two nodes.
The critical path between “not” and “buy” is neg ↑ccomp,
number of traversed nodes is 2. Similarly, the path between
the node “again” and “good” is ↓advmod ↑ccomp.
Table 1 shows various lexical feature such as POS tag and
lemma of cue and focused word. Along with the features
of cue and focused words chain of features is also provided
for neighboring words. Similarly, syntactic features such as
dependency information for cue and neighboring words are
also provided in the form of features as shown in Figure 2.

2) Training and Testing of CRF for Scope Prediction using
BIO Labels

The whole dataset is split into train (80%), and test
(20%) data for training and testing of CRF. In ML, the CRF
is mainly used for sequence labeling tasks by considering
the label of dependent tokens. CRF is a class of probabilistic
graphical models that learn various features and patterns of
input text during training. Based on the learned patterns it
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TABLE I. FEATURES USED FOR NEGATION SCOPE PREDICTION

Feature Description

Token Focused word
BOS Beginning of sentence
EOS End of sentence
Cue Negative word
Lemma cue The root form of the cue
POS cue Parts of speech of the cue
Chain lemma Lemma of neighboring words
Chain POS Parts of speech of neighboring words
Dependency information Traversed syntactic dependency direction and relation of the edge
Critical path Shortest dependency path from cue to the focused token
Nodes Count of nodes to be traversed in the critical path

Figure 1. Dependency graph of a sentence.

Figure 2. Proposed methodology for negation detection and handling
in sentiment analysis.

predicts the labels of each token [28] shown in Equation
1. The conditional probability of labels Y for a given input
sequence W can be represented as

P(Y |W) = 1
Z(W)

∏m
i=1 exp

(

∑n
j=1 λ j.f j(yi, yi−1,w, i)

)

(1)

Where:

P(Y |W) denotes the conditional probability of label
sequence Y given input sequence or token W.
Z(W) denotes the partition function which, for a given input
sequence, normalizes the probability to sum up to 1 over
all possible label sequences.
λ j are the weights/parameters associated with each feature.
f j(yi, yi−1,w, i) represents a feature function that finds the
relationship between negation cues and label sequence at
position i.
yi, yi−1 represent the BIO labels that can be B (begin), I
(inside), or O (outside) or negation cue for token w at
position i.

This function checks the presence of negation at position
i and the model learns the weights λ j of features during
training and based on the learned relationships model pre-
dicts the labels of tokens in the prediction step. CRF works
with two types of features i.e. document specific features
and word embedding features. In Equation 1 CRF is trained
with both features. In Figure 1 CRF is trained and tested
on Conan Doyle dataset for BIO labels prediction. Then the
trained CRF model is stored in a Python pickle file, this
trained model is used to make predictions of BIO labels
on Amazon dataset as shown in Figure 1 and the predicted
BIO labels are shown in Table II. Consequently, negation
handling, polarity prediction of reviews, and sentiment anal-
ysis is done on Amazon datasets using predicted polarity (1,
0, -1). Table II shows the sentence number, token number
corresponding token and predicted BIO of each token in a
sentence.

D. Negation Handling

Scope of negation cues are predicted in the form of BIO
labels then determine the sentiment strength of each token in
a sentence using SWN. Next, flip the polarity of each word
inside the BIO scope i.e. affected by the negation cue, and
make the value of cue=0. The polarity of each sentence is
calculated by the sum of all the polarities of tokens in a
sentence. Here, a threshold of 0.7 is used if the calculated
polarity is less than 0.7 then it is given a polarity score of
-1 for greater than it is 1 and equal to 0.7 it is considered
as 0. This final predicted polarity is considered for the final
sentiment analysis of reviews.
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TABLE II. Displays the predicted BIO Labels on the Amazon Dataset

Sent no Token no Token BIO Label

74 2 is I scope
74 3 okay I scope
74 4 i I scope
74 5 would I scope
74 6 not B cue
74 7 go B scope
75 1 no B cue
75 2 tea B scope
75 3 flavor I scope
75 4 at I scope
75 5 all I scope

TABLE III. Displays the Accuracy and F-Score of CRF for Negation Scope Prediction

CRF Accuracy F-Score

Train Data 99.7% 99.7%
Test Data 98.4% 98.3%

TABLE IV. Results of sentiment analysis for Product dataset before
Negation Handling

Amazon (Food Products Dataset)

Before negation handling

ML Model F-Score Recall Precision Accuracy

LR 81.9 % 82.9 % 81.1 % 83.0 %

SVM 81.5 % 82.4 % 80.7 % 83.2 %

DT 73.2 % 73.3 % 73.4 % 73.0 %

NB 68.7 % 67.7 % 69.8 % 70.0 %

TABLE V. Results of sentiment analysis for Product dataset after
Negation Handling

Amazon (Food Products Dataset)

After negation handling

ML Model F-Score Recall Precision Accuracy

LR 86.2% 86.3% 86.1% 86.0%

SVM 85.5% 85.6% 85.4% 85.4%

DT 75.4% 75.4% 75.5% 75.4%

NB 69.2% 68.7% 69.9% 71%

E. Sentiment Analysis

Sentiment analysis of Amazon datasets is performed
using the predicted polarity. This calculated polarity is used
in the next phase of sentiment analysis. The classification
of sentences is executed using supervised ML algorithms
due to their enhanced performance in classification given
by [19]. SVM, LR, DT, and NB classifiers are used be-
fore and after the negation handling of reviews. Before
negation handling, the sentiment analysis is done using

TABLE VI. Results of sentiment analysis for Electronics dataset
before Negation Handling

Amazon (Electronic Dataset)

Before negation handling

ML Model F-Score Recall Precision Accuracy

LR 82.4% 82% 83% 84.4%

SVM 74.5% 74.5% 74.6% 81%

DT 67.3% 67.3% 67.3% 67.4%

NB 68.5% 68.6% 68.5% 68.6%

TABLE VII. Results of sentiment analysis for Electronics dataset
after Negation Handling

Amazon (Electronic Dataset)

After negation handling

ML Model F-Score Recall Precision Accuracy

LR 85.1% 85.5% 85.2% 85.2%

SVM 75.49% 75% 76% 83.4%

DT 67.4% 67.5% 67.4% 67.4%

NB 69.2% 68.7% 69.8% 70%

original polarity, and post negation handling the sentiment
analysis is performed using the predicted polarity by the
proposed system. The results indicate an improvement in
the classification performance after negation handling and
all the used classifiers are given below.

1) Logistic Regression (LR)

For multiclass classification LR uses Equation 2 as
shown below to predict the output.
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TABLE VIII. DISPLAY THE COMPARISON OF VARIOUS APPROACHES FOR NEGATION SCOPE PREDICTION USING CONANDOYLE
DATASET (SHERLOCK)

Paper Approach F-score

[12] Rule based 76.03%
[13] Rule based 62.65%
[18] ML (Deep parsing system) 88.2%
[23] ML(SVM) 76.23%

Proposed
approach ML(CRF) 98.3%

TABLE IX. COMPARISON OF VARIOUS APPROACHES FOR SENTIMENT ANALYSIS AFTER NEGATION HANDLING.

Paper Dataset Approach Accuracy Precision Recall F-score

[1] Xia et al. Electronics LR 83.4%
SVM 83%
NB 82.5%

[29]Li et al˙ Electronics SVM(stacking) 83%
[20] Punetha et al˙ Products NEGVOT 83% 84% 81% 80%
Proposed approach Product LR 86% 86.1% 86.3% 86.1%

SVM 85.4% 85.4% 85.6% 85.5%
NB 71.1% 69.9% 68.7% 69.2%

Proposed approach Electronics LR 85.2% 85.2% 85% 85.1%
SVM 83.4% 76% 75% 76%
NB 70% 69.8% 68.7% 69.2%

P(Y=1|X) = 1

1+e−(β0+β1 x1+β2 x2+...+βn xn) (2)
Where :
P(Y = 1 | X) represents the probability of the class label 1
for given input feature X.
e represents the base of natural logarithm.
β0, β1, β2, . . . , βn represents the coefficients (weights) cor-
responding to each feature x1, x2, . . . , xn.
x0, set to 1, corresponding to the intercept term.

2) Support Vector Machine (SVM)

SVM is a supervised ML model that is used to resolve
regression and classification challenges. It is used to resolve
linear and non-linear problems by generating hyperplanes to
separate different data points into different categories. SVM
performs classification using Equation 3 given below.

f(x) = sign
(

∑n
j=1 α jy j⟨x, x j⟩ + b

)

(3)

where :
f (x) represents a decision function that determines the class
labels for input x. x0 is set to 1, corresponding to the
intercept term.
α j represents the Lagrange multiplier that is determined
during training.
y j denotes class labels.
x j denotes class labels.
⟨x, x j⟩ represents the dot product between the support vector
x j and the input vector x.
b represents the bias.

3) Decision Tree (DT)

It is a supervised ML model that can be used for both
regression and classification problems. It is in tree form and
consists of three parts i.e. branch, internal node and leaf

node. Branch represents decision, internal node represents
feature and leaf represents label. This algorithm selects
the best features based on entropy and gini impurity etc.
and continue until some criteria are met. Then it makes
predictions by traversing the tree from root to leaf node
[27].

4) Naive Bayes (NB)

It is a probabilistic classification model that can be used
for both binary and multi-class classification problems by
considering the probability of each element [27]. It is an
easy-to-implement and fast algorithm that converges faster
than LR and requires less training data. NB predicts the
output according to Equation 4 given below.
NB selects the class that maximizes posterior probability
P(C | X) for classification.

P(C|X) ∝ P(C).
∏n

i=1 p
(

xi|C
)

(4)

Where :
P(C | X) represents the posterior probability of class C
for feature X.
P(C) represents the probability of element belong to class C.
n represents the number of features xi is the ithfeature in

the instance.

4. Experimental Setup and Results

In this research, all the implementation has been exe-
cuted on Jupyter Notebook using Python 3.7 along with
16 GB RAM and i7 processor. In this research, three
datasets are used as discussed in section 3.1. Among all
these datasets Conan Doyle’s (Sherlock) story dataset is
used to train and test CRF with lexical and syntactic
features described in section 3. Then this trained CRF is
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Figure 3. Comparison of various approaches and the proposed
method for negation scope detection.

used to predict the scope of negation on Amazon datasets.
Further, negation handling is performed on Amazon datasets
and sentiment analysis is done after and before negation
handling using LR, SVM, DT, and NB with K=5 (K stands
for K-fold cross-validation) as shown in Table IV, V, VI and
VII and the detailed description of implementation is given
in the various parts of section 3.

Table III shows the training and test results of the CRF
for negation scope prediction. According to the results,
the performance of CRF is pretty good for negation scope
prediction in comparison to approaches given in Table VIII.
From Tables IV and V, it is identified that LR and SVM,
DT, and NB give better performance for all metrics after
negation handling. Table IV and V shows that there is
3.61%, 2.64% 2.7% and 1.42% increase in accuracy for LR,
SVM, DT and NB for food product dataset. Consecutively,
9.4%, 3%, and 2% improvement for LR, SVM, and NB for
electronic dataset.

5. Discussion and Comparison

Table VIII shows the performance of the proposed ap-
proach is better as compared to other approaches for scope
prediction. Table IX shows the comparison of the proposed
approach with [1], [20] and [21] for sentiment analysis after
negation handling. In all these approaches different datasets
are used but comparison is performed only with products
and electronics datasets because these are common datasets
among proposed and compared approaches.

Table IX demonstrates that the accuracy of sentiment
analysis after negation handling gives better performance
as compared to other approaches. LR gives 86%, 85%for
both datasets which is better than [1], [20], and [29]. SVM
also gives an improved accuracy of 85% and 83.4%, but NB
performs poorly compared to [1] for sentiment classification
after negation handling. In case of f-score, the proposed
approach performs poorly with 71% for product dataset
but NEGVOT gives 80% score. Also, figure 4 shows that
NEGVOT performs well in precision, recall and F-score
for NB. NEVGOT also gives improved precision and recall
score of 84% and 81% as compared to SVM on the elec-
tronics dataset. Figure 3 shows the performance comparison

Figure 4. Performance comparison of various sentiment analysis
approaches across electronic and product datasets.

of the proposed approach and various approaches using F-
score for negation scope prediction. From Figure 3 it is
revealed that the proposed approach gives a 98.3% score
which is 11.3% enhancement compared to [22].
From the literature, we found most of the approaches limit
their work up to negation cue and scope detection and
there are limited approaches that perform negation handling
and sentiment analysis after finding negation cues and their
scope. However, the proposed work also has a few limita-
tions for instance, if the model is unable to find the negation
properly then it can cause a wrong prediction of the scope
and polarity of the sentence which can cause the wrong
classification of sentences. To resolve these challenges we
will try to enhance the performance of the proposed work
using deep learning techniques in our future work.

6. Conclusion and Future Directions

Negation is responsible for affecting the orientation
of sentiments. To resolve this challenge and to improve
sentiment accuracy a negation scope detection, and handling
approach is proposed. Various experiments were carried out
on different datasets using the proposed approach and the
results revealed that the majority of ML classifiers enhance
the accuracy of sentiment analysis with negation handling.
Hence, it can be inferred that the proposed approach when
used with sentiment analysis proves to be more efficient.
However, in this research, only explicit negations are han-
dled. In future work, explicit negations may be analyzed
using deep learning techniques. Moreover, in the future, the
proposed method may also be applied to mixed language
datasets.
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